Vectors A level Edexcel Past Papers Questions

01. At time t seconds, where $t \ge 0$, a particle P moves in the x-y plane in such a way that its velocity $\mathbf{v} \mathbf{m} \mathbf{s}^{-1}$ is given by

$$\mathbf{v} = t^{-\frac{1}{2}}\mathbf{i} - 4t\mathbf{j}$$

When t = 1, P is at the point A and when t = 4, P is at the point B.

Find the exact distance AB.

02. [In this question **i** and **j** are horizontal unit vectors due east and due north respectively and position vectors are given relative to the fixed point O.]

A particle P moves with constant acceleration.

At time t = 0, the particle is at O and is moving with velocity $(2i - 3j) \text{ m s}^{-1}$

At time t = 2 seconds, P is at the point A with position vector (7i - 10j) m.

(a) Show that the magnitude of the acceleration of P is 2.5 m s⁻²

(4)

At the instant when P leaves the point A, the acceleration of P changes so that P now moves with constant acceleration $(4i + 8.8j) \text{ m s}^{-2}$

At the instant when P reaches the point B, the direction of motion of P is north east.

(b) Find the time it takes for P to travel from A to B.

(4)

O3. A particle, P, moves with constant acceleration (2i - 3j) ms⁻²
At time t = 0, the particle is at the point A and is moving with velocity (-i + 4j) ms⁻¹
At time t = T seconds, P is moving in the direction of vector (3i - 4j)
(a) Find the value of T.
(4)

At time t = 4 seconds, P is at the point B.

(b) Find the distance AB.

(4)

04. (i) At time t seconds, where $t \ge 0$, a particle P moves so that its acceleration $a \, \text{m s}^{-2}$ is given by

$$\mathbf{a} = (1 - 4t)\mathbf{i} + (3 - t^2)\mathbf{j}$$

At the instant when t = 0, the velocity of P is 36 im s^{-1}

(a) Find the velocity of P when t = 4

(3)

(b) Find the value of t at the instant when P is moving in a direction perpendicular to i

(3)

(ii) At time t seconds, where $t \ge 0$, a particle Q moves so that its position vector \mathbf{r} metres, relative to a fixed origin O, is given by

$$\mathbf{r} = (t^2 - t)\mathbf{i} + 3t\mathbf{j}$$

Find the value of t at the instant when the speed of Q is $5 \,\mathrm{m \, s^{-1}}$

(6)

O5. A particle P moves with constant acceleration (2i - 3j) m s⁻²
At time t = 0, P is moving with velocity 4im s⁻¹
(a) Find the velocity of P at time t = 2 seconds.
(2)
At time t = 0, the position vector of P relative to a fixed origin O is (i + j) m.
(b) Find the position vector of P relative to O at time t = 3 seconds.
(2)

[In this question, i and j are horizontal unit vectors.]

06. A particle P of mass 4kg is at rest at the point A on a smooth horizontal plane.

At time t = 0, two forces, $\mathbf{F}_1 = (4\mathbf{i} - \mathbf{j})\mathbf{N}$ and $\mathbf{F}_2 = (\lambda \mathbf{i} + \mu \mathbf{j})\mathbf{N}$, where λ and μ are constants, are applied to P

Given that P moves in the direction of the vector (3i + j)

(a) show that

$$\lambda - 3\mu + 7 = 0 \tag{4}$$

At time t = 4 seconds, P passes through the point B.

Given that $\lambda = 2$

(b) find the length of AB.

(5)

07. At time t seconds, where $t \ge 0$, a particle P has velocity $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$ where

$$\mathbf{v} = (t^2 - 3t + 7)\mathbf{i} + (2t^2 - 3)\mathbf{j}$$

Find

- (a) the speed of P at time t = 0 (3)
- (b) the value of t when P is moving parallel to (i + j) (2)
- (c) the acceleration of P at time t seconds
 (2)
- (d) the value of t when the direction of the acceleration of P is perpendicular to i

 (2)