Vectors A level Edexcel Past Paper Answers

01.

Scheme	Marks	AOs
Integrate v w.r.t. time	Ml	1.1a
$\mathbf{r} = 2t^{\frac{1}{2}}\mathbf{i} - 2t^2\mathbf{j} \ (+ \mathbf{C})$	A1	1.1b
Substitute $t = 4$ and $t = 1$ into their r	M1	1.1b
$t = 4$, $\mathbf{r} = 4\mathbf{i} - 32\mathbf{j}(+\mathbf{C})$; $t = 1$, $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$ or $(4, -32)$; $(2, -2)$	Al	1.1b
$\sqrt{2^2 + (-30)^2}$	M1	1.1b
$\sqrt{904} = 2\sqrt{226}$	A1	1.1b
	(6)	

(6 marks)

Notes: Allow column vectors throughout

M1: At least one power increasing by 1.

A1: Any correct (unsimplified) expression

M1: Must have attempted to integrate v. Substitute t = 4 and t = 1 into their r to produce 2 vectors (or 2 points if just working with coordinates).

A1: $4\mathbf{i} - 32\mathbf{j}(+\mathbf{C})$ and $2\mathbf{i} - 2\mathbf{j}(+\mathbf{C})$ or (4, -32) and (2, -2). These can be seen or implied.

M1: Attempt at distance of form $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ for their points. Must have 2 non zero terms.

A1: $\sqrt{904} = 2\sqrt{226}$ or any equivalent surd (exact answer needed)

02.3(a)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$: $(7\mathbf{i} - 10\mathbf{j}) = 2(2\mathbf{i} - 3\mathbf{j}) + \frac{1}{2}\mathbf{a}2^2$	MI	3.1b
	$\mathbf{a} = (1.5\mathbf{i} - 2\mathbf{j})$	Al	1.1b
	$ \mathbf{a} = \sqrt{1.5^2 + (-2)^2}$	Ml	1.1b
	= 2.5 m s ⁻² * GIVEN ANSWER	Al*	2.1
		(4)	
(b)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 3\mathbf{j}) + 2(1.5\mathbf{i} - 2\mathbf{j})$	Ml	3.1b
	$=(5\mathbf{i}-7\mathbf{j})$	Al	1.1b
	$\mathbf{v} = (5\mathbf{i} - 7\mathbf{j}) + t(4\mathbf{i} + 8.8\mathbf{j}) = (5 + 4t)\mathbf{i} + (8.8t - 7)\mathbf{j}$ and $(5 + 4t) = (8.8t - 7)$	Ml	3.1b
	t = 2.5 (s)	Al	1.1b
		(4)	

(O manles)

Notes: Allow column vectors throughout

(a)

No credit for individual component calculations

M1: Using a complete method to obtain the acceleration. N.B. Equation, in a only, could be obtained by two integrations

ALTERNATIVE

M1: Use velocity at half-time (t = 1) = Average velocity over time period

So at
$$t = 1$$
, $\mathbf{v} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j})$ so $\mathbf{a} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j}) - (2\mathbf{i} - 3\mathbf{j})$

N.B. could see (7i-10j)=(4i-6j)+2a as first line of working

A1: Correct a vector

M1: Attempt to find magnitude of their a using form $\sqrt{a^2 + b^2}$

A1*: Correct GIVEN ANSWER obtained correctly

(b)

M1: Using a complete method to obtain the velocity at A e.g. by use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with t = 2 and

 $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$ and their a

OR: by use of
$$s = vt - \frac{1}{2}at^2$$

OR: by integrating their a, with addition of C = 2i - 3j, and putting t = 2

A1: correct vector

M1: Complete method to find equation in t only

e.g. by using $\mathbf{v} = \mathbf{u} + \mathbf{a}t$, with their \mathbf{u} and equating \mathbf{i} and \mathbf{j} components

OR: by integrating (4i + 8.8j), with addition of a constant, and equating i and j components.

N.B. Must be equating **i** and **j** components of <u>a velocity vector</u> and must be their velocity at A, to give an equation in t only for this M mark

A1: 2.5 (s)

03 (a)	$(\mathbf{v} =) \mathbf{C} + (2\mathbf{i} - 3\mathbf{j})t$	M1	3.1a
	$(\mathbf{v} =)(-\mathbf{i} + 4\mathbf{j}) + (2\mathbf{i} - 3\mathbf{j})t$	A1	1.1b
	$\frac{4-3T}{-1+2T} = \frac{-4}{3}$ oe	M1	3.1a
	T=8	A1	1.1b
		(4)	
(b)	$(\mathbf{s} =)\mathbf{C}t + (2\mathbf{i} - 3\mathbf{j})\frac{1}{2}t^2 (+\mathbf{D})$	M1	3.1a
	$(\mathbf{s} =) \left(-\mathbf{i} + 4\mathbf{j}\right)t + \frac{1}{2} \left(2\mathbf{i} - 3\mathbf{j}\right)t^2 \ (+\mathbf{D})$	A1	1.1b
	$AB = \sqrt{12^2 + 8^2}$ N.B. Beware you may see 4(2i – 3j) which leads to $\sqrt{(8^2 + 12^2)}$ this is M0A0M0A0.	M1	3.1a
	$=4\sqrt{13}(=14.422051)$ (m)	Alcso	1.1b
		(4)	
		(8)	

25.				
M	larks	Notes		
		Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$		
		OR integration to give an expression of the form $C+(2i-3j)t$, where C is a		
a	M1	non-zero constant vector		
		M0 if u and a are reversed		
		Condone use of $\mathbf{a} = (2\mathbf{i} + 3\mathbf{j})$ for this M mark		
	A1	Any correct unsimplified expression seen or implied		
		Correct use of ratios, using a velocity vector (must be using $\frac{-4}{3}$) to give equation		
	M1	in T only		
		M0 if they equate $4-3T = -4$ and/or $-1+2T=3$ and therefore M0 if they then		
		divide to produce their equation		
	A1	Correct only		
		N.B.		
		(i) Can score the second M1A1 if they get $T = 8$, using a calculator to solve two simultaneous equations, but if answer is wrong, and no equation in T only, second M0		
		(ii) Can score M1A1 M1A1 if they get $T = 8$, using trial and error, but if they don't get $T = 8$, can only score max M1A1M0A0		

!b	M1	Use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $\mathbf{a} = (2\mathbf{i} - 3\mathbf{j})$ OR integration to give an expression of the form $Ct + (2\mathbf{i} - 3\mathbf{j})\frac{1}{2}t^2$, where C is their non-zero constant vector from (a) Condone use of $\mathbf{a} = (2\mathbf{i} + 3\mathbf{j})$ for this M mark OR any other complete method using vector suvat equations
	A1	Correct unsimplified expression seen or implied
	М1	Use of $t = 4$ in their s (which must be a displacement vector) and then Pythagoras with the root sign N.B. This M mark can be implied by a correct answer, otherwise we need to see Pythagoras used, with the root sign, for the M mark.
	Alcso	Any surd form or 14 or better

C)4	4	•

i)(a)	Integrate a wrt t to obtain velocity	M1	3.4
	$\mathbf{v} = (t - 2t^2)\mathbf{i} + \left(3t - \frac{1}{3}t^3\right)\mathbf{j} \ (+\mathbf{C})$	A1	1.1b
	$8i - \frac{28}{3}j \ (m \ s^{-1})$	A1	1.1b
		(3)	
i)(b)	Equate i component of v to zero	M1	3.1a
	$t - 2t^2 + 36 = 0$	Alft	1.1b
	t = 4.5 (ignore an incorrect second solution)	A1	1.1b
		(3)	
i(ii)	Differentiate r wrt to t to obtain velocity	M1	3.4
	$\mathbf{v} = (2t - 1)\mathbf{i} + 3\mathbf{j}$	A1	1.1b
	Use magnitude to give an equation in t only	M1	2.1
	$(2t-1)^2 + 3^2 = 5^2$	A1	1.1b
	Solve problem by solving this equation for t	M1	3.1a
	t = 2.5	A1	1.1b
		(6)	

(12 marks)

:

Notes: A	ccept	column vectors throughout	
3(i)(a) M1 At least 3 terms with p		At least 3 terms with powers increasing by 1 (but M0 if clearly just multiplying by t)	
	A1 Correct expression		
	A1	Accept 8i-9.3j or better. Isw if speed found.	
3(i)(b) M1 Must have an equation in t only (Must have integrated to find a velocity		Must have an equation in t only (Must have integrated to find a velocity vector)	
	A1 ft	Correct equation follow through on their v but must be a 3 term quadratic	
	A1	cao	
3(ii)	M1	At least 2 terms with powers decreasing by 1 (but M0 if clearly just dividing by t)	
	A1	Correct expression	
	M1	Use magnitude to give an equation in t only, must have differentiated to find a velocity (M0 if they use $\sqrt{x^2 - y^2}$)	

	A1	Correct equation $\sqrt{(2t-1)^2+3^2}=5$
	M1	Solve a 3 term quadratic for t which has come from differentiating and using a magnitude. This M mark can be implied by a correct answer with no working.
	A1	2.5

05. (a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with $t = 2$: $\mathbf{v} = 4\mathbf{i} + 2(2\mathbf{i} - 3\mathbf{j})$ OR integration : $\mathbf{v} = (2\mathbf{i} - 3\mathbf{j})t + 4\mathbf{i}$, with $t = 2$	M1	3.1a
	$\mathbf{v} = 8\mathbf{i} - 6\mathbf{j}$	A1	1.1b
		(2)	
(b)	Use of $r = ut + \frac{1}{2}at^2$ at $t = 3$:		
	$(\mathbf{i} + \mathbf{j}) + \left[3 \times 4\mathbf{i} + \frac{1}{2} \times (2\mathbf{i} - 3\mathbf{j}) \times 3^2 \right]$		
	OR : find v at $t = 3$: $4i + 3(2i - 3j) = (10i - 9j)$		
	then use $\mathbf{r} = \frac{1}{2}(\mathbf{u} + \mathbf{v})t$		
	$(\mathbf{i} + \mathbf{j}) + \left[\frac{1}{2}[4\mathbf{i} + (10\mathbf{i} - 9\mathbf{j})] \times 3\right]$	M1	3.1a
	or $\mathbf{r} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$		
	$(\mathbf{i}+\mathbf{j})+\left[3\times(10\mathbf{i}-9\mathbf{j})-\frac{1}{2}\times(2\mathbf{i}-3\mathbf{j})\times3^{2}\right]$		
	OR integration: $\mathbf{r} = (\mathbf{i} + \mathbf{j}) + \left[(2\mathbf{i} - 3\mathbf{j}) \frac{1}{2} t^2 + 4t\mathbf{i} \right]$, with $t = 3$		
	r = 22i - 12.5j	A1	2.2a
		(2)	

(4 marks)

:

Note	es: A	accept column vectors throughout
1a M1 Complete method to find v, using ruvat or integration (M0 if i and/or j is missing)		
	A1	Apply isw if they also find the speed
1b	M1	Complete method to find the p.v. but this mark can be scored if they omit (i + j) i.e. the M1 is for the expression in the square bracket If they integrate, the M1 is earned once the expression in the square bracket is seen with t = 3 (M0 if i and/or j is missing)
	A1	cao

06. (a)	$(4\mathbf{i} - \mathbf{j}) + (\lambda \mathbf{i} + \mu \mathbf{j}) = (4 + \lambda)\mathbf{i} + (-1 + \mu)\mathbf{j}$	M1	3.4
	Use ratios to obtain an equation in λ and μ only	M1	2.1
	$\frac{(4+\lambda)}{(-1+\mu)} = \frac{3}{1}$ or $\frac{\frac{1}{4}(4+\lambda)}{\frac{1}{4}(-1+\mu)} = \frac{3}{1}$	A1	1.1b
	$\lambda - 3\mu + 7 = 0$ * Allow $0 = \lambda - 3\mu + 7$ but nothing else.	A1*	1.1b
		(4)	

(b)	$\lambda = 2 \Rightarrow \mu = 3$; Rest	ultant force =	(6i + 2j) (N)		M1	3.1a
	$(6\mathbf{i} + 2\mathbf{j}) = 4\mathbf{a}$	OR	$\left (6\mathbf{i} + 2\mathbf{j}) \right = 4$	а	M1	1.1b
	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ W	ith u = 0, their	\mathbf{a} and $t=4$:		DM1	
	Or they may integrate the	heir a twice w	ith $\mathbf{u} = 0$ and put t	=4:		2.1
	$r = \frac{1}{2} \times \frac{(6i + 2j)}{4} 4^2 = (1$	2i+4j)				
	$\sqrt{12^2 + 4^2}$				M1	1.1b
	ALTERNATIVE 1 fo	r last two M 1	marks:			
	Use of $s = ut + \frac{1}{2}at^2$, wi	ith $u = 0$, their	a and $t = 4$:	DM1		
	$s = \frac{1}{2} \times \sqrt{1.5^2 + 0.5^2} \times 4^2$	2				
	Use of Pythagoras to fin	nd mag of a:	$a = \sqrt{1.5^2 + 0.5^2}$	M1		
	ALTERNATIVE 2 fo	r last two M 1	marks:			
	Use of $s = ut + \frac{1}{2}at^2$, where	ith $u = 0$, their	a and $t = 4$:	DM1		
	$s = \frac{1}{2} \times \left(\frac{\sqrt{6^2 + 2^2}}{4} \right) \times 4^2$					
	Use of Pythagoras to fin	nd (6i+2j) :	$=\sqrt{6^2+2^2}$	M1		
	$\sqrt{160}$, $2\sqrt{40}$, $4\sqrt{10}$ oe	or 13 or bette	er (m)		A1	1.1b
					(5)	
:					(9 1	narks)

Notes: Accept column vectors throughout

a	M1	Adding the two forces, i's and j's must be collected (or must be a single column vector) seen or implied
	l	Must be using ratios; Ignore an equation e.g. $(4+\lambda)\mathbf{i} + (-1+\mu)\mathbf{j} = 3\mathbf{i} + \mathbf{j}$ if they go on to use ratios.

	However, if they write $4+\lambda=3$ and $-1+\mu=1$ then $3(-1+\mu)=3$ so
	$4 + \lambda = 3(-1 + \mu)$ with no use of a constant, it's M0
	They may use the acceleration, with a factor of $\frac{1}{4}$ top and bottom, see alternative
	Allow one side of the equation to be inverted
A1	Correct equation
A1*	Given answer correctly obtained. Must see at least one line of working, with the LH fraction 'removed'.

b	M1	Adding \mathbf{F}_1 and \mathbf{F}_2 to find the resultant force, λ and μ must be substituted N.B. M0 if they use $\mu = 2$ coming from $-1 + \mu = 1$ in part (a). Use of $\mathbf{F} = 4\mathbf{a}$ Or $ \mathbf{F} = 4a$, where \mathbf{F} is their resultant. (including $3\mathbf{i} + \mathbf{j}$) This is an independent mark, so could be earned, for example, if they have subtracted the forces to find the 'resultant' N.B. M0 if only using \mathbf{F}_1 or \mathbf{F}_2
	DM 1	Dependent on previous M mark for Either: use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}at^2$ with $\mathbf{u} = 0$, their a and $t = 4$ to produce a displacement vector Or: integrate twice, with $\mathbf{u} = 0$, their a and $t = 4$ to produce a displacement Vector Or: use of $s = ut + \frac{1}{2}at^2$ with $u = 0$, their a and $t = 4$ to produce a length
-	M1	Use of Pythagoras, with square root, to find the magnitude of their displacement vector, \mathbf{a} or \mathbf{F} (M0 if only using \mathbf{F}_1 or \mathbf{F}_2) depending on which method they have used.
	A1	cao

7.	Scheme	Marks	AOs
а	7i – 3j seen or implied by Pythagoras	B1	1.1b
	Use Pythagoras: $\sqrt{7^2 + (-3)^2}$	M1	3.1a
	$\sqrt{58}$, 7.6 or better (m s ⁻¹)	A1	1.1b
		(3)	
b	$t^2 - 3t + 7 = 2t^2 - 3$ OR $\frac{t^2 - 3t + 7}{2t^2 - 3} = \frac{1}{1} = 1$	M1	2.1
	t = 2 only	A1	1.1b
		(2)	
	Differentiate v wrt <i>t</i> to give a vector.	M1	3.1a
C -	$(2t-3)\mathbf{i} + 4t\mathbf{j}$	A1	1.1b
		(2)	
d	2t - 3 = 0	M1	3.1a
	t = 1.5	A1	1.1b
		(2)	

Notes: Allow column vectors throughout.

а	B1	сао	
	М1	Use of Pythagoras, including the square root, on a velocity vector at $t = 0$	
	A1	cao. Must come from a <u>correct</u> v.	
b	М1	Equating i and j components of v or a ratio of 1:1 to obtain a quadratic in t only.	
		If they use a constant, e.g. $t^2 - 3t + 7 = k$ and $2t^2 - 3 = k$, k must be eliminated to earn this	
		mark.	
		N.B. M0 (since wrong working seen) if they write down	
		$i + j = (t^2 - 3t + 7)i + (2t^2 - 3)j$	
		OR $\binom{1}{1} = \binom{t^2 - 3t + 7}{2t^2 - 3}$	
		OR $t^2 - 3t + 7 = 1$ and $2t^2 - 3 = 1$	

		and then $t^2 - 3t + 7 = 2t^2 - 3$
	A1	t = 2
_		N.B. Allow M1A1 for a correct trial and error method where they obtain $\mathbf{v} = 5\mathbf{i} + 5\mathbf{j}$ when $t = 2$ but M0 if they don't get $t = 2$
C	M1	At least one power decreasing by 1 in each component in their v (M0 if clearly dividing by t) Both i and j needed in their answer or a column vector Allow recovery if the i and j disappear and then reappear.
	A1	cao (must be a vector) isw e.g. if they find the magnitude or put $t=0$ or differentiate again i's and j's do not need to be collected. N.B. Allow M1A0 for $2t-3i+4tj$
ď	M1	2t – 3 = 0 or (their derivative of the i -component of v) = 0 N.B. M0 if they equate the derivative of both components of v to zero.
	A1	N.B. Correct answer, with no working, can score both marks.