Variable acceleration As level Edexcel Machanics Maths Past <u>Papers Answers</u>

01.

Question	Sch	eme	Marks	AOs
а	Finds third angle of triangle and uses or states $\frac{x}{\sin 60^{\circ}} = \frac{30}{\sin"50^{\circ"}}$	Finds third angle of triangle and uses or states $\frac{y}{\sin 70^{\circ}} = \frac{30}{\sin"50^{\circ"}}$	M1	2.1
	So $x = \frac{30\sin 60^{\circ}}{\sin 50^{\circ}}$ (= 33.9)	So $y = \frac{30\sin 70^{\circ}}{\sin 50^{\circ}}$ (= 36.8)	A1	1.1b
	Area = $\frac{1}{2} \times 30 \times x \times \sin 70$ ° or	$\frac{1}{2} \times 30 \times y \times \sin 60$	M1	3.1a
	$= 478 \text{ m}^2$		A1ft	1.1b
			(4)	
(b)	Plausible reason e.g. Because the not given to four significant figu Or e.g. The lawn may not be flat	res	В1	3.2b
			(1)	

(5 marks)

Notes

- (a) M1: Uses sine rule with their third angle to find one of the unknown side lengths
 - A1: finds expression for, or value of either side length
 - M1: Completes method to find area of triangle
 - A1ft: Obtains a correct answer for their value of x or their value of y.
- (b) B1: As information given in the question may not be accurate to 4sf or the lawn may not be flat so modelling by a plane figure may not be accurate.

02.

Question	Scheme	Marks	AOs
а	Multiply out and differentiate wrt to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v=2t^3-3t^2+t$	A1	1.1b
	$2t^3 - 3t^2 + t = 0$ and solve: $t(2t-1)(t-1) = 0$	DM1	1.1b
	$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b
	All three	A1	1.1b
		(5)	
(b)	Find x when $t = 0$, $\frac{1}{2}$, 1 and 2: $(0, \frac{1}{32}, 0, 2)$	M1	2.1
	Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1
	$2\frac{1}{16}$ (m) oe or 2.06 or better	A1	1.1b
		(3)	
(c)	$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a
	$\frac{1}{2} \text{ perfect square so } x \ge 0 \text{ i.e. never negative}$	A1 cso	2.4
		(2)	
		(10	marks)

Notes:

(a)

M1: Must have 3 terms and at least two powers going down by 1

A1: A correct expression

DM1: Dependent on first M, for equating to zero and attempting to solve a cubic

A1: Any two of the three values (Two correct answers can imply a correct method)

A1: The third value

(b)

M1: For attempting to find the values of x (at least two) at their t values found in (a) or at t=2

or equivalent e.g. they may integrate their v and sub in at least two of their t values

M1: Using a correct strategy to combine their distances (must have at least 3 distances)

A1:
$$2\frac{1}{16}$$
 (m) oe or 2.06 or better

(c)

M1: Identify strategy to solve the problem such as:

- (i) writing x as $\frac{1}{2}$ × perfect square
- (ii) or using x values identified in (b).
- (iii) or using calculus i.e. identifying min points on x-t graph.
- (iv) or using x-t graph.

A1 cso: Fully correct explanation to show that $x \ge 0$ i.e. never negative

03.

Question	Scheme	Marks	AOs	Notes
3(a)	$v = 12 + 4t - t^2 = 0 \text{ and solving}$	MI	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	t = 6 (or -2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$\left(a = \frac{\mathrm{d}v}{\mathrm{d}t} = \right) 4 - 2t$	A1	1.1b	Cao; only need RHS
	When $t = 6$, $a = -8$; Magnitude is 8 (m s ⁻²)	Al	1.1b	Substitute in t = 6 and get 8 (m s ⁻²) as the answer. Must be positive. (A0 if two answers given)
		(5)		
(b)	Integrate v wrt t	MI	3.1a	For integration (at least two powers increasing by 1)
	$(s=)12t+2t^2-\frac{1}{3}t^3(+C)$	A1	1.1b	Correct expression (ignore C) only need RHS Must be used in part (b)
	t = 3 => distance = 45 (m)	A1	1.1b	Correct distance. Ignore units
		(3)		
		(8 r	narks)	

04.

Question	Scheme	Marks	AOs
а	$v = 3t - 2t^2 + 14$ and differentiate	M1	3.1a
	$a = \frac{dv}{dt} = 3 - 4t$ or $(7 - 2t) - 2(t + 2)$ using product rule	A1	1.1b
	3-4t=0 and solve for t	M1	1.1b
	$t = \frac{3}{4}$ oe	A1	1.1b
		(4)	
b	Solve problem using $v = 0$ to find a value of $t \left(t = \frac{7}{2} \right)$	M1	3.1a
	$v = 3t - 2t^2 + 14$ and integrate	M1	1.1b
	$s = \frac{3t^2}{2} - \frac{2t^3}{3} + 14t$	A1	1.1b
	Substitute $t = \frac{7}{2}$ into their <i>s</i> expression (M0 if using <i>suvat</i>)	M1	1.1b
	$s = \frac{931}{24} = 38\frac{19}{24} = 38.79166(m)$ Accept 39 or better	A1	1.1b
		(5)	
		(9 n	narks)

Notes:

(a)	M1	Multiply out and attempt to differentiate, with at least one power decreasing
	A1	Correct expression
	M1	Equate their a to 0 and solve for t
	A1	cao
(b)	M1	Uses $v = 0$ to obtain a value of t
	M1	Attempt to integrate, with at least one power increasing
	A1	Correct expression
	M1	Substitute in their value of t , which must have come from using $v = 0$, into their s (must have integrated)
	A1	39 or better

05

Question	Scheme	Marks	AOs
а	Differentiate v w.r.t. t	M1	3.1a
	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 10 - 2t \text{isw}$	A1	1.1b
		(2)	
b	Solve problem using $v = 0$ when $t = 6$	M1	3.1a
	$0 = 10t - t^2 - 24$	A1	1.1b
	Solve quadratic oe to find other value of t	M1	1.1b
	t=4	A1	1.1b
		(4)	
С	Integrate v or -v w.r.t. t	M1	3.1a
	$5t^2 - \frac{1}{3}t^3 - 24t$	A1	1.1b
	Total distance = $-\left[5t^2 - \frac{1}{3}t^3 - 24t\right]_0^4 + \left[5t^2 - \frac{1}{3}t^3 - 24t\right]_4^6$	M1	2.1
	$\frac{116}{3}$ (m)	A1	1.1b
		(4)	

(10 marks)

Note	Notes:		
а	M1	Differentiate, with both powers decreasing by 1	
	A1	Correct expression	
b	M1	Put $t = 6$ OR use $(t-6)(t-x) = t^2 - 10t + k$ oe	
	A1	Correct expression (unsimplified) for $v = (t-6)(t-4)$	
	M1	Put $v = 0$ to give quadratic in t and solve for other value of t	
	A1	t = 4	
С	M1	Integrate, with at least two powers increasing by 1 (allow if only two terms integrated)	
	A1	Correct expression	
	M1	Complete method to find the total distance	
	A1	Accept 39(m) or better	

06.

Question	Scheme	Marks	AOs
а	Differentiate s wrt t	М1	3.1a
	$(v=) t^2 - 5t + 6$	A1	1.1b
	Equate their v to 0 and solve	M1	1.1b
	t=2 or 3	A1	1.1b
	(a =) 2t-5	B1ft	2.1
	a = 1 and -1 (m s ⁻²) isw (A0 if extras)	A1	1.1b
		(6)	
(b)	Attempt to find values of s for $t = 2, 3$ and 4 oe	DM1	1.1b
	Correct values are $\left(s_2 = \frac{14}{3}, s_3 = \frac{9}{2} \text{ and } s_4 = \frac{16}{3}\right)$		
	Could be implied by correct values for:		
	s_2 , $(s_3 - s_2)$ and $(s_4 - s_3)$ which are $\frac{14}{3}$, $(-\frac{1}{6})$ and $\frac{5}{6}$		
	Total distance travelled		
	$= s_2 + (s_2 - s_3) + s_4 - s_3$	M1	2,1
	OR $s_2 - (s_3 - s_2) + s_4 - s_3$		
	OR $\left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_0^2 - \left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_2^3 + \left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_3^4$		
	OR $\frac{14}{3}$ - $(-\frac{1}{6})$ + $\frac{5}{6}$		
	OR $s_2 + 2(s_2 - s_3) + s_4 - s_2$		
	$(=2s_2-2s_3+s_4)$ oe		
	$5\frac{2}{3}$ oe (m) Accept 5.7 or better	A1	1.1b
		(3)	

(9 marks)

Notes:

a	M1	Differentiate, with at least 2 powers decreasing by 1
	A1	Correct expression
	M1	Must have attempted to differentiate s to find v and be solving a 3 term quadratic
	A1	Both values needed
	B1ft	Follow their v (must be differentiating)

	A1	cao
b	DM 1	This mark is dependent on the 2 nd M1 in part (a) and their t values are between 0 and 4. Clear attempt to find all three s values (may integrate their v incorrectly) N.B. No penalty for extra values.
	M1	Complete method using their s values Do NOT condone sign errors.
	A1	Any equivalent fraction, 5.7 or better.
		S.C. Correct answer, with no working, scores all 3 marks, since $\int_{0}^{4} t^2 - 5t + 6 dt$ entered on a calculator will give $\frac{17}{3}$

07

Question	Scheme	Marks	AOs
а	$15-3^2-2\times 3=0$ *	B1*	1.1b
		(1)	
Ь	Differentiate v wrt t	M1	2.1
	-2t-2	A1	1.1b
	8 (m s ⁻²)	A1	1.1b
		(3)	
С	Integrate v w.r.t. t	M1	1.1b
	$15t - \frac{1}{3}t^3 - t^2$	A1	1.1b
	Total distance = $\left[15t - \frac{1}{3}t^3 - t^2\right]_0^3 - \left[15t - \frac{1}{3}t^3 - t^2\right]_3^4$ OR $s_3 + (s_3 - s_4)$ where s_3 means the value of their integral when $t = 3$.	M1	3.1a
	N.B. Allow the negative of this.		
	$\frac{94}{3}$ (m)	A1	1.1b
		(4)	

(8 marks)

Note	Notes:			
а	B1*	Correct expression, correctly evaluated to give 0		
_		OR $0 = 15 - t^2 - 2t$		
_		t = 3		
b	M1	Differentiate ν , with at least two powers decreasing by 1		
	A1	Correct expression		
	A1	cao (must be positive)		
		N.B. If they give 8 as their answer, without any working, this can score all 3 marks.		
С	M1	Integrate v, with at least two powers increasing by 1 (allow if only two terms integrated) .		
	A1	Correct expression. Ignore (+ C)		
	M1	Complete method to find the total distance or displacement		
	A1	Accept 31(m) or better, must be positive		
		N.B. If the indefinite integral $(15t - \frac{1}{3}t^3 - t^2)$ is never seen, they score nothing, even if the		
		correct answer appears, as this indicates they have used a calculator to do the whole question.		