Sketching graphs As level Edexcel Maths Past Papers Answers

01.

Question	Scheme	Marks	AOs
а	$x^3 + 10x^2 + 25x = x(x^2 + 10x + 25)$	M1	1.1b
	$=x(x+5)^2$	A1	1.1b
		(2)	
(b)	A cubic with correct	M1	1.1b
	Curve passes through the origin (0, 0) and touches at (-5, 0) (see note below for ft)	Alft	1.1b
		(2)	
(c)	Curve has been translated a to the left	M1	3.1a
	a = -2	A1ft	3.2a
	a = 3	A1ft	1.1b
		(3)	

(7 marks)

Notes

(a) M1: Takes out factor x

A1: Correct factorisation - allow x(x+5)(x+5)

(b) M1: Correct shape

A1ft: Curve passes through the origin (0, 0) and touches at (-5, 0) – allow follow through from incorrect factorisation

(c) M1: May be implied by one of the correct answers for a or by a statement

A1ft: ft from their cubic as long as it meets the x-axis only twice.

A1ft: ft from their cubic as long as it meets the x-axis only twice.

02.

Question	Scheme	Marks	AOs
а	$(g(-2)) = 4 \times -8 - 12 \times 4 - 15 \times -2 + 50$	M1	1.1b
	$g(-2) = 0 \Rightarrow (x+2)$ is a factor	A 1	2.4
		(2)	
(b)	$4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 20x + 25)$	M1 A1	1.1b 1.1b
	$=(x+2)(2x-5)^2$	M1 A1	1.1b 1.1b
		(4)	
(c)	(i) $x \le -2$, $x = 2.5$	M1 A1ft	1.1b 1.1b
	(ii) $x = -1, x = 1.25$	Blft	2.2a
		(3)	
		(9 marks)

Notes

(a)

M1: Attempts g(-2) Some sight of (-2) embedded or calculation is required.

So expect to see
$$4 \times (-2)^3 - 12 \times (-2)^2 - 15 \times (-2) + 50$$
 embedded

Or
$$-32-48+30+50$$
 condoning slips for the M1

Any attempt to divide or factorise is M0. (See demand in question)

A1: $g(-2) = 0 \Rightarrow (x+2)$ is a factor.

Requires a correct statement and conclusion. Both "g(-2) = 0" and "(x+2) is a factor" must be seen in the solution. This may be seen in a preamble before finding g(-2) = 0 but in these cases there must be a minimal statement ie QED, "proved", tick etc.

(b)

M1: Attempts to divide g(x) by (x+2) May be seen and awarded from part (a)

If inspection is used expect to see $4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 15x + 50)$

If algebraic / long division is used expect to see
$$\frac{4x^2 \pm 20x}{x+2 \sqrt{4x^3 - 12x^2 - 15x + 50}}$$

A1: Correct quadratic factor is $(4x^2 - 20x + 25)$ may be seen and awarded from part (a)

M1: Attempts to factorise their $(4x^2 - 20x + 25)$ usual rule (ax + b)(cx + d), $ac = \pm 4$, $bd = \pm 25$

A1:
$$(x+2)(2x-5)^2$$
 oe seen on a single line. $(x+2)(-2x+5)^2$ is also correct.

Allow recovery for all marks for
$$g(x) = (x+2)(x-2.5)^2 = (x+2)(2x-5)^2$$

(c)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for either $x \le -2$ or x = 2.5 Follow through on their $g(x) = (x+2)(ax+b)^2$ only where ab < 0 (that is a positive root). Condone x < -2 See SC below for $g(x) = (x+2)(2x+5)^2$

A1ft: BOTH $x \le -2$, x = 2.5 Follow through on their $-\frac{b}{a}$ of their $g(x) = (x+2)(ax+b)^2$ May see $\{x \le -2 \cup x = 2.5\}$ which is fine.

(c) (ii)

B1ft: For deducing that the solutions of g(2x) = 0 will be where x = -1 and x = 1.25 Condone the coordinates appearing (-1,0) and (1.25,0)

Follow through on their 1.25 of their $g(x) = (x+2)(ax+b)^2$

SC: If a candidate reaches $g(x) = (x+2)(2x+5)^2$, clearly incorrect because of Figure 2, we will award

In (i) M1 A0 for $x \le -2$ or x < -2

In (ii) B1 for x = -1 and x = -1.25

Alt (b)	$4x^3 - 12x^2 - 15x + 50 = (x+2)(ax+b)^2$			
	$= a^2x^3 + (2ba + 2a^2)x^2 + (b^2 + 4ab)x + 2b^2$			
	Compares terms to get either a or b	M1	1.1b	
	Either $a=2$ or $b=-5$	A1	1.1b	
	Multiplies out expression $(x+2)(\pm 2x \pm 5)^2$ and compares to $4x^3 - 12x^2 - 15x + 50$	M1		
	All terms must be compared or else expression must be multiplied out and establishes that $4x^3 - 12x^2 - 15x + 50 = (x+2)(2x-5)^2$	A1	1.1b	
		(4)		

03.

Question	Scheme	Marks	AOs
а	$\frac{1}{x}$ shape in 1st quadrant	М1	1.1b
	Correct	A1	1.1b
	Asymptote $y = 1$	B1	1.2
		(3)	
(b)	Combines equations $\Rightarrow \frac{k^2}{x} + 1 = -2x + 5$	M1	1.1b
	$(xx) \Rightarrow k^2 + 1x = -2x^2 + 5x \Rightarrow 2x^2 - 4x + k^2 = 0$ *	A1*	2.1
		(2)	
(c)	Attempts to set $b^2 - 4ac = 0$	M1	3.1a
	$8k^2 = 16$	A1	1.1b
	$k = \pm \sqrt{2}$	A1	1.1b
		(3)	

(8 marks)

Notes

(a)

M1: For the shape of a $\frac{1}{x}$ type curve in Quadrant 1. It must not cross either axis and have acceptable curvature. Look for a negative gradient changing from -∞ to 0 condoning "slips of the pencil". (See Practice and Qualification for clarification)

A1: Correct shape and position for both branches.

It must lie in Quadrants 1, 2 and 3 and have the correct curvature including asymptotic behaviour

B1: Asymptote given as y = 1. This could appear on the diagram or within the text. Note that the curve does not need to be asymptotic at y = 1 but this must be the only

asymptote offered by the candidate.

(b)

M1: Attempts to combine $y = \frac{k^2}{x} + 1$ with y = -2x + 5 to form an equation in just x + 1. Multiplies by x (the processed line must be seen) and proceeds to given answer with no

slips.

Condone if the order of the terms are different $2x^2 + k^2 - 4x = 0$

M1: Deduces that $b^2 - 4ac = 0$ or equivalent for the given equation.

If a, b and c are stated only accept $a = 2, b = \pm 4, c = k^2$ so $4^2 - 4 \times 2 \times k^2 = 0$

Alternatively completes the square $x^2 - 2x + \frac{1}{2}k^2 = 0 \Rightarrow (x-1)^2 = 1 - \frac{1}{2}k^2 \Rightarrow "1 - \frac{1}{2}k^2" = 0$

A1: $8k^2 = 16$ or exact simplified equivalent. Eg $8k^2 - 16 = 0$

If a, b and c are stated they must be correct. Note that b^2 appearing as 4^2 is correct

Notes On Questions Continue

A1: $k = \pm \sqrt{2}$ and following correct a, b and c if stated

A solution via differentiation would be awarded as follows

M1: Sets the gradient of the curve $=-2 \Rightarrow -\frac{k^2}{x^2} = -2 \Rightarrow x = (\pm)\frac{k}{\sqrt{2}}$ oe and attempts to

substitute into $2x^2 - 4x + k^2 = 0$

A1: $2k^2 = (\pm)2\sqrt{2}k$ oe

A1: $k = \pm \sqrt{2}$

04.

•				
Question	Scheme		Marks	AOs
а	$9x - x^3 = x\left(9 - x^2\right)$		M1	1.1b
	$9x - x^3 = x(3 - x)(3 + x)$) oe	A1	1.1b
			(2)	
(b)		A cubic with correct orientation	B1	1.1b
	-3\ O\ 3 x	Passes though origin, (3, 0) and (-3, 0)	В1	1.1b
			(2)	
(c)	$y = 9x - x^3 \Rightarrow \frac{dy}{dx} = 9 - 3x^2 = 0 \Rightarrow x = (\pm)\sqrt{3} \Rightarrow y = \dots$		M1	3.1a
	$y = (\pm) 6\sqrt{3}$ $\begin{cases} k \in \square : -6\sqrt{3} < k < 6\sqrt{3} \end{cases}$		A1	1.1b
	$\left\{ k \in \square : -6\sqrt{3} < k < 6\sqrt{3} \right\}$) oe	Alft	2.5
			(3)	
_			(7	marks)

Notes

(a)

M1: Takes out a factor of x or -x. Scored for $\pm x(\pm 9 \pm x^2)$ May be implied by the correct answer or $\pm x(\pm x \pm 3)(\pm x \pm 3)$.

Also allow if they attempt to take out a factor of $(\pm x \pm 3)$ so score for $(\pm x \pm 3)(\pm 3x \pm x^2)$

A1: Correct factorisation. x(3-x)(3+x) on its own scores M1A1.

Allow eg -x(x-3)(x+3), x(x-3)(-x-3) or other equivalent expressions Condone an = 0 appearing on the end and condone eg x written as (x+0).

(b)

B1: Correct shape (negative cubic) appearing anywhere on a set of axes. It must have a minimum to the left and maximum to the right. Be tolerant of pen slips. Judge the intent of the shape. (see examples)

B1: Passes **through** each of the origin, (3, 0) and (-3, 0) and no other points on the x axis. (The graph should not turn on any of these points).

The points may be indicated as just 3 and -3 on the axes. Condone x and y to be the wrong way round eg (0,-3) for (-3,0) as long as it is on the correct axis but do not allow (-3,0) to be labelled as (3,0).

Examples B1B0

B0B1

B1B1

-3

- (c) *Be aware the value of y can be solved directly using a calculator which is not acceptable*
- M1: Uses a correct strategy for the y value of either the maximum or minimum. E.g. differentiates to achieve a quadratic, solves $\frac{dy}{dx} = 0$ and uses their x to find y
- A1: Either or both of the values $(\pm)6\sqrt{3}$. Cannot be scored for an answer without any working seen.
- A1ft: Correct answer in any acceptable set notation following through their $6\sqrt{3}$. Condone $\left\{"-6\sqrt{3}" < k < "6\sqrt{3}"\right\}$ or $\left\{"-6\sqrt{3}" < k\right\} \cap \left\{k < "6\sqrt{3}"\right\}$ but not $\left\{"-6\sqrt{3}" < k\right\} \cup \left\{k < "6\sqrt{3}"\right\}$

Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer. Must be in terms of k

05.

Question	Scheme	Marks	AOs
а	Shape in quadrant 1 or 3	M1	1.1b
	Shape and Position	A1	1.1b
		(2)	
(b)	Deduces that $x < 0$	B1	2.2a
	Attempts $\frac{16}{x}$ $2 \Rightarrow x$ $\pm \frac{16}{2}$	M1	1.1b
	$x < 0$ or $x \geqslant 8$	A1 cso	2.2a
		(3)	
			•

(5 marks)

Notes:

(a)

M1: For the correct shape in quadrant 1 or 3. Do not be concerned about position but it must not cross either axis. Ignore incorrect asymptotes for this mark.

A1: Correct shape and position. There should be no curve in either quadrant 2 or quadrant 4. The curve must not clearly bend back on itself but condone slips of the pen.

(b)

B1: Deduces that x < 0 but condone $x \le 0$ for this mark.

M1: Attempts $\frac{16}{x}$...2 \Rightarrow x... $\pm \frac{16}{2}$ where the ... means any equality or inequality.

A1: $\cos x < 0$ or $x \ge 8$ (Both required)

Set notation may be seen $\{x:x<0\}\cup\{x:x\geqslant 8\}$ o.e. $x\in(-\infty,0)\cup[8,\infty)$

Accept x < 0, $x \ge 8$ but not x < 0 and $x \ge 8$

Must not be combined incorrectly, e.g., $8 \le x < 0$ or $\{x: x < 0\} \cap \{x: x \ge 8\}$