Probability and venn Diagram As level Edexcel statistics Maths Past Papers Answers

Question	Scheme	Marks	AOs
а	p = [1 - 0.75 - 0.05 =] 0.20	B1	1.1b
		(1)	
(b)	q = 0.15	B1ft	1.1b
	$P(A) = 0.35$ $P(T) = 0.6$ $P(A \text{ and } T) = 0.20$ $P(A) \times P(T) = 0.21$	M1	2.1
	Since $0.20 \neq 0.21$ therefore A and T are not independent	Al	2.4
		(3)	
(0)	0.15 (0.20) 0.40 0.05 (0.20)		
(c)	P(not [A or C]) = 0.45	B1	1.1b
	(not [A or C]) = <u>6.45</u>	(1)	
		(:	5 marks)
Part	Notes		
(a)	B1cao for $p = 0.20$		
(b)	B1ft for use of their p and P(A or T) to find q i.e. $0.75 - p - 0.40$	$0 \underline{\text{ or } q = 0}.$	15
	M1 for the statement of all probabilities required for a suitable to	est and sigl	nt of
	any appropriate calculations required.		
(4)	A1 All probabilities correct, correct comparison and suitable cor	nment.	
(c)	B1cao for 0.45		

02

2.	_			
ı	Qu	Scheme	Marks	AO
	а	P(X=4) = P(X=2) so $P(X=4) = 0.35P(X=1) = P(X=3)$ and $P(X=1) + P(X=3) = 1 - 0.7So$	A1	2.1 1.1b
	(b)	Let $A =$ number of spins that land on 4 $A \sim B(60, "0.35")$	B1ft (2)	3.3
		$[P(A > 30) =]$ $1 - P(A \le 30)$ = 1 - 0.99411 = awrt 0.00589	M1 A1 (3)	3.4 1.1b
	(c)	$Y - X \leqslant 4 \implies \frac{12}{X} - X \leqslant 4 \text{ or } 12 - X^2 \leqslant 4X \text{ (since } X > 0) \text{ o.e.}$	M1	3.1a
		i.e. $0 \le X^2 + 4X - 12 \implies 0 \le (X + 6)(X - 2)$ so $X \ge 2$	M1	1.1b
		$P(Y-X \le 4) = P(X \ge 2) = 0.35 + 0.15 + 0.35 = 0.85$	A1 (3)	3.2a
			(8 marks	
		Notes		
	(a) (b)	Award for statement $P(X = 4) = P(X = 2)$ or writing $P(X = 4) = 0.35$ A1 for getting fully correct distribution (any form that clearly identifies probs) e.g. can be list $P(X = 1) = 0.15$, $P(X = 3) =$ etc or as a probability function [Condone missing $P(X = 2)$ as this is given in QP] $P(X = x) = \begin{cases} 0.15 & x = 1,3 \\ 0.35 & x = 2,4 \end{cases}$		9
	(c)	1st M1 for translating the prob. problem into a correct mathematical		
	ALT	Just an inequality in 1 variable. May be inside a probability statement. Table of values: $ \begin{vmatrix} X & 1 & 2 & 3 & 4 \\ Y & 12 & 6 & 4 & 3 \end{vmatrix} $ or values of $ Y - X = 11, 4, 1, -1 $		
	ALT	2 nd M1 for solving the inequality leading to a range of values, allow 1 or 2 slips May be a quadratic or cubic but must lead to a set of values of X or Y - X Table or values: They must state clearly which values are required Both Ms can be implied by a correct answer (or correct ft of their distb'n) A1 for interpreting the inequality and solving the problem i.e. 0.85 cao		

Question	Scheme	Marks	AOs
a	Label each year group	B1	1.1b
	Use <u>random</u> numbers to select a	В1	1.1b
	Simple random sample of 24 Year 12s and 16 Year 13s.	B1	1.1b
		(3)	
(b)	Increase by 2.8 marks	B1	3.4
		(1)	
(c)	e.g. 'the best performance is predicted for the students who never wake up'	Bl	3.5b
		(1)	
		(:	5 marks)
	Notes		
	year group. Condone poor numbering but if just one list, then the Year 12 distinguishable from the Year 13s B1: for use of random numbers/sample/selection to choose studen B1: for 24 Year 12s, and 16 Year 13s		
Note:	Note: A description of a systematic sample: only allow access to the first mark and there may score maximum B1B0B0		herefore
(b)	B1: Using the gradient of the regression equation must include increase(o.e.) and 2		and <u>2.8</u>
(c)	B1: for any suitable limitation of the model e.g. the idea that the longer you sleep the better performance in the test or only valid between 0 and 24 hours (within range of the data) or only applicable to the amount of sleep the night before the test or only takes sleep into consideration/does not include other variables (factors) or cannot score below 26.1 marks on the test or the model might not be linear over the entire range or the model might predict more than the maximum mark B0: e.g. might not be correlation between s and p or individual student performance may vary		actors)

04.

Question	Scheme	Marks	AOs
а	x = 0	B1	2.2a
	P(A) = 0.1 + z + y $P(C) = 0.39 + z[+x]$ $P(A and C) = z$	M1	2.1
	$P(A \text{ and } C) = P(A) \times P(C) \rightarrow z = (0.1 + z + y) \times (0.39 + z[+x])$	M1	1.1b
	$\left[\sum p = 1\right]$ $0.06 + 0.3 + 0.39 + 0.1 + z + y[+x] = 1 \rightarrow [z + y[+x] = 0.15]$	M1	1.1b
	Solving (simultaneously) leading to $\underline{z = 0.13}$ $\underline{y = 0.02}$	A1	1.1b
		(5 marks)

Notes

B1: for x = 0, may be seen on Venn diagram

M1: Identifying the probabilities required for independence and at least 2 correct
These must be labelled

If there are no labels, then this may be implied by z = (0.1 + z + y)(0.39 + z [+x]), allow one numerical slip

Allow e.g.

$$P(A') = 0.39 + 0.30 + 0.06[+x]$$
 $P(C) = 0.39 + z[+x]$ $P(A' \text{ and } C) = 0.39$

[Not on spec. but you may see use of conditional probabilities]

M1: Use of independence equation with their labelled probabilities in terms y, z [and x]

All their probabilities must be substituted into a correct formula Sight of a correct equation e.g. z = (0.1 + z + y)(0.39 + z [+x]) scores M1M1

M1: Using $\Sigma p = 1$

Implied by [x +] y + z = 0.15

or their x + y + z = 0.15 where x, y, and z are all probabilities or e.g. P(A) = 0.25

A1: both y = 0.02 and z = 0.13

Que	estion	Scheme	Marks	AOs
		Overall method	M1	2.1
		a+b=2c+0.5 oe or $a+b=2(1-a-b)$	B1	2.2a
		a+b+c=0.75 oe	B1	1.1b
		$3c = 0.25$ $\left[c = 0.0833 \text{ or } \frac{1}{12}\right]$	M1	1.1b
		P(scoring 2,4 or 4,2 or 3,3) = $2 \times "\frac{1}{12}" \times 0.15 + 0.1^2$	M1	3.1b
		= 0.035 oe	Alcso	1.1b
			(6)	
		Notes	(6	marks)
	M1:	A fully correct method with all the required steps. For gaining 2 correct equations with at least one correct(allow if unsimplified). Attempting to solve to find a value of c followed by correct method to find the probability		
	B1:	Forming a correct equation from the information given in the question		
	B1:	A correct equation using the sum of the probabilities equals 1		
	M1: Correct method for solving 2 equations to find c Implied by $c = \frac{1}{12}$			
M1: Recognising the ways to get a total of 6. Condone missing arrangments or repeats. Do not ignore extras written unless ignored in the calculation. May be implied by $m \times \frac{1}{12} \times 0.15 + n \times 0.1^2$ where m and n are positive integers A1cso: Cao 0.035, $\frac{7}{200}$ oe		Do not		
		Cao 0.035, $\frac{7}{200}$ oe		

Qu	Scheme	Marks	AO
а	$[p=1-(0.2+0.2+0.1+0.2)] = \underline{0.3}$	B1 (1)	1.1b
(b)	A and C are mutually exclusive. [NOT $P(A)$ and $P(C)$]	B1 (1)	1.2
		(2 marks)	
	Notes		
(a)	B1 for		
(b)	B1 for A and C [NB $A \cap C$ or $A \cap C = \emptyset$ is B0] If more than one case given they must <u>all</u> be correct e.g. $A \cap B$ and C		

Qu	Scheme	Marks	AO
a	Systematic (sampling)	Bl	1.2
		(1)	
(b)(i)	[Daily Mean] Wind Speed B1		2.2a
(ii)	Light	B1	1.2
		(2)	
(c)	Variable A occurs most (around 80~90%) of the time	B1	2.2b
		(1)	
		(4 marks)	
	Notes		
(a)			
	Allow slight misspelling e.g. "sysmatic", "sytmatic"		
	Do NOT allow "systemic"		
		(* 5.5	
(b)(i)			
/**×	Allow "Wind speed" or "Wind strength" but NOT just "wind" or "wind direction"		
(ii)	B1 for realising that modal wind speed is "Light" {LDS mark}		
NID	Allow just "light" or "most light"		
NB	These two B marks are independent so can score B0B1 for e.g. "rainfa	iii and light	-
(a)	D1 for informing that frequency of 4 can be estimated fairly reliably (unde	ractimatae D e	nd
(c)	B1 for inferring that frequency of A can be estimated fairly reliably: {underestimates B and over estimates C}		
	e.g. "A is the most frequent" [can then ignore comments about B and C]		
	e.g. A is the most nequent can then ignore comments about B and C		

ś				
_	Qu	Scheme	Marks	AO
		Must end up with 3 of each colour or 4 of each colour	M1	3.1b
		$\underline{n=2}$ requires 1 st red and 2 nd green or red from A and green from B	M1	2.2a
		P(1 st red and 2 nd green) = $\frac{4}{9} \times \frac{1}{10} = \frac{4}{90}$ or $\frac{2}{45}$ $p = \frac{2}{45}$	A1	1.1 b
		$\underline{n=5}$ requires 1 st green and 2 nd yellow or green from A and yellow from B	M1	2.2a
		P(1 st green and 2 nd yellow) = $\frac{5}{12} \times \frac{3}{10} = \frac{15}{120}$ or $\frac{1}{8}$ $p = \frac{1}{8}$	A1	1.1b
			(5)	
			(5 marks)	
		Notes		
		 1st M1 for an overall strategy realising there are 2 options. Award when evidence of both cases (3 of each colour or 4 of each col 2nd M1 for n = 2 and attempt at 1st red and 2nd green 	our) seen.	
		May be implied by e.g. $\frac{4}{9} \times \frac{1}{9}$		
		1 st A1 for $p = \frac{2}{\underline{45}}$ or exact equivalent		
		3^{rd} M1 for $n = 5$ and attempt at 1^{st} green and 2^{nd} yellow May be implied by e.g. $\frac{5}{12} \times \frac{3}{9}$		
		$2^{\text{nd}} \text{ A1 for } p = \frac{1}{8} \text{ or exact equivalent}$		
	NB	If both correct values of p are found and then added (get $\frac{61}{360}$), deduct final	A1 only (i.e	. 4/5)

Mark AO

09.

Qu Scheme

Calc

as given above.

 3^{rd} A1 m = 6 and n = 8 only (no incorrect labelling here)

Qu	Scheme	Maik	AU
5. a (i)	Require $R = 3$ and $G = 4$ so probability is $\frac{3}{4} \times \frac{1}{3}$	М1	2.1
	$= \frac{1}{4} \text{ or } \underline{0.25}$	A1	1.1b
(ii)	[R must be 2 and $G = 1$ so $\frac{1}{4} \times \frac{2}{3}$] = $\frac{1}{6}$	A1	1.1b
		(3)	
(b)	P(X = 50) = 0.25 must mean $R = 3$ and $G = 4$	M1	3.1a
	so $3m + 4n = 50$	A1	1.1b
	$P(X=20) = \frac{1}{6} \implies R=2, G=1$ so $2m+n=20$	A1	2.1
	Solving: $3m + 4(20 - 2m) = 50$ (o.e.)	M1	1.1b
	$\underline{m=6}$ and $\underline{n=8}$	A1 (5)	3.2a
		(5) (8 marks	9
	Notes	(o marks	<u>,, </u>
(a)(i)			
(-)(-)	M1 for sight of $\frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times \frac{2}{3}$ as a single product BUT allow e.g. $\frac{3}{4} \times \frac{1}{3} + \frac{1}{3} \times \frac{3}{4}$	o score M1	
	However if the products are later added e.g. $\frac{3}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3}$ it is M0		
	May be implied by one correct answer to (i) or (ii)		
	A1 for $\frac{1}{4}$ or 0.25 or exact equivalent (allow 25%)		
	4		
(ii)	A1 for $\frac{1}{6}$ or exact equivalent		
(b) For the 1st 4 marks condone incorrect labelling e.g. R for m or G for n if intention is clear 1st M1 for identifying either set of cases $(R = 2, G = 1, X = 20)$ or $(R = 3, G = 4, X = 50)$ Allow 1st M1 for $P(X = 20) = \frac{1}{4} \times \frac{2}{3}$ or $P(X = 50) = \frac{3}{4} \times \frac{1}{3}$ NOT just $P(X = 20) = \frac{1}{6}$ etc			
	or $\frac{1}{4}m + \frac{2}{3}n = 20$ or $\frac{3}{4}m + \frac{1}{3}n = 50$ and might score 2^{nd} M1 (answer is $m = \frac{1}{4}m + \frac{2}{3}n = 20$	64, n = 6	
	or $\frac{1}{4}m + \frac{2}{3}n = \frac{1}{6}$ or $\frac{3}{4}m + \frac{1}{3}n = \frac{1}{4}$ and might score 2^{nd} M1 (answer is $m = \frac{1}{4}$	$\frac{4}{15}$, $n = \frac{3}{20}$)	
	or $2m + n = \frac{1}{6}$ or $3m + 4n = \frac{1}{4}$ and might score 2^{nd} M1 (answer is $m =$		
	or $2m+n=50$ and $3m+4n=20$ and might score 2^{nd} M1 (answer is $m=3$		2)
	1st A1 for one correct equation	-,	,
	2 nd A1 for both correct equations and no incorrect equations, unless they attempt to correct 2 equations only	to solve the	
	2^{nd} M1 for attempt to solve their two linear equations in m and n (reduce to an equ	ation in on	e

variable, condone one sign error). May be implied by m = 6 and n = 8.

Correct answer by trial can score 5/5 if no incorrect working seen.

If they use one of the 4 sets of equations for 1st M1 and use a calculator to write down the answer, we will allow this mark for sight of the correct answers to those equations

10.

Question	Scheme	Marks	AOs
а	$61 \times (2 \times 3)$, $63 \times (2 \times 12)$, $65 \times (2 \times 8)$, $67 \times (2 \times 2)$	M1	2.1
	$\frac{61 \times (2 \times 3) + 63 \times (2 \times 12) + 65 \times (2 \times 8) + 67 \times (2 \times 2)}{50} = 63.72*$	A1*cso	1.1b
· ·		(2)	
(b)	$\sqrt{\frac{61^2 \times 6 + 63^2 \times 24 + 65^2 \times 16 + 67^2 \times 4}{50} - 63.72^2}$	M1	1.1b
	$=\sqrt{2.5216} = 1.58795$ = awrt <u>1.59</u>	Al	1.1b
		(2)	
(c)	No effect (oe) sincee.g. • since addition/subtraction does not affect the standard deviation (only multiplication and division do) • the weights will have the same spread • the distance of each weight from the mean will not have changed • they all change by the same amount	В1	2.4
		(1)	
		(5 marks)

(5 mark

	Notes	
(a)	M1: at least 3 correct products seen (oe) Allow any 3 from 366, 1512, 1040, 268 A1*cso: correct expression for mean (which may be seen in stages) and given answer. $\frac{3186}{50} = 63.72$ on its own is M0A0, but $\frac{3186}{50} = 63.72$ following all 4 correct products seen can score M1A1	
SC:	B2: $\frac{61\times3+63\times12+65\times8+67\times2}{25} = 63.72*$ scores M1A1 on epen	
(b)	M1: correct expression for the standard deviation including root Allow equivalent complete methods e.g. $ \sqrt{\frac{6(61-63.72)^2+24(63-63.72)^2+16(65-63.72)^2+4(67-63.72)^2}{50}} $ NB: $\sum fx^2 = 203138$ A1: awrt 1.59 (allow $s = \text{awrt } 1.60$) Correct answer with no incorrect working scores 2 out of 2	
SC: B2: $\sqrt{\frac{61^2 \times 3 + 63^2 \times 12 + 65^2 \times 8 + 67^2 \times 2}{25} - 63.72^2} = \text{awrt } 1.59 \text{ score}$		
(c)	B1: correct statement and correct explanation	