Organic Chemistry GCSE AQA Higher Chemistry Past Papers Questions

01.	This question is about organic compounds.	
	This question is about organic compounds.	
	Hydrocarbons can be cracked to produce smaller molecules.	
	The equation shows the reaction for a hydrocarbon, $C_{18}H_{38}$	
	$C_{18}H_{38} \rightarrow C_6H_{14} + C_4H_8 + 2C_3H_6 + C_2H_4$	
1	Which product of the reaction shown is an alkane? [1 mark] Tick one box.	1
	C ₂ H ₄	
	C ₃ H ₆	
	C ₄ H ₈	
	C ₆ H ₁₄	

Table 1 shows the boiling point, flammability and viscosity of C₁₈H₃₈ compared with the other hydrocarbons shown in the equation.

Table 1

	Boiling point	Flammability	Viscosity
A	highest	lowest	highest
В	highest	lowest	lowest
С	lowest	highest	highest
D	lowest	highest	lowest

Which letter, A, B, C or D, shows how the properties of $C_{18}H_{38}$ compare with the properties of C_2H_4 , C_3H_6 , C_4H_8 and C_6H_{14} ?

[1 mark]

	Tick one box.									
	A									
	В									
	С									
	D									
3	The hydrocarbon C ₄	H ₈ was b	urnt	in air.						
	Incomplete combust	ion occu	rred.							
	Which equation, A, I reaction?	B, C or D	, cor	rectly r	eprese	ents the i	ncon	nplete com	bustion	
	rodollom								[1 m	ark]
	Α	C₄H ₈	+	40	\rightarrow	4CO	+	4H ₂		
	В	C ₄ H ₈	+	4O ₂	\rightarrow	4CO	+	4H₂O		
	С	C ₄ H ₈	+	6O ₂	\rightarrow	4CO ₂	+	4H₂O		
	D	C ₄ H ₈	+	80	\rightarrow	4CO ₂	+	4H ₂		
	Tick one box.									
	Α									
	В									
	С									
	D									

0 1 . 4 Propanoic acid is a carboxylic acid.

Which structure, A, B, C or D, shows propanoic acid?

[1 mark]

Tick one box.

- Α
- В
- С
- D
- 5 Propanoic acid is formed by the oxidation of which organic compound?

Tick one box.

Propane

Propene

Propanol

Polyester

[1 mark]

- **02.** Ethene is used to produce poly(ethene).
- 1 Draw the bonds to complete the displayed formulae of ethene and poly(ethene) in the equation.

[2 marks]

$$\begin{array}{ccccc}
H & H \\
h & C & C & \longrightarrow & \begin{pmatrix} H & H \\
C & C \\
H & H \end{pmatrix}$$

2 Polyesters are made by a different method of polymerisation.

The equation for the reaction to produce a polyester can be represented as:

$$nHO - \bigcirc OH + nHOOC - \bigcirc COOH \rightarrow + \bigcirc OOC - \bigcirc -COO + 2nH_2O$$

Compare the polymerisation reaction used to produce poly(ethene) with the polymerisation reaction used to produce a polyester.

[4 marks]

03.
In industry ethanol is produced by the reaction of ethene and steam at 300°C and 60 atmospheres pressure using a catalyst.

The equation for the reaction is:

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

Figure 12 shows a flow diagram of the process.

Figure 12

1	Why does the mixture from the separator contain ethanol and water?	[1 mark]

2	The forward reaction is exothermic.	
	Use Le Chatelier's Principle to predict the effect of increasing temperature on the amount of ethanol produced at equilibrium.	
	Give a reason for your prediction. [2 marks	s]
		_
		_
3	Explain how increasing the pressure of the reactants will affect the amount of ethanol produced at equilibrium.	
	[2 marks	s]
		_
		_

04.

Methylated spirit is a useful product made from a mixture of substances.

Table 1 shows the mass of the substances in a sample of methylated spirit.

Table 1

Substance	Mass in grams
Ethanol	265.5
Methanol	23.3
Pyridine	3.0
Methyl violet	1.5

1	What name is given to a useful product such as methylated spirit?	[1 mark]
2	Calculate the percentage by mass of methanol in methylated spirit.	
	Use Table 1.	[2 marks]
	Percentage =	%

Methylated spirit contains ethanol and is available cheaply.

Methylated spirit also contains: · pyridine which has a very unpleasant smell methyl violet which makes the mixture purple. 3 Suggest why pyridine and methyl violet are added to ethanol to make methylated spirit. [1 mark] Suggest one use of methylated spirit. [1 mark] 5 Describe how ethanol is produced from sugar solution. Give the name of this process. [3 marks]

Complete Figure 2.	[1 mark]
Figure 2	
H—C—C H	
Name the gas produced when sodium is added to ethanol.	[1 mark]
Name the gas produced when sodium is added to ethanol. Methanol is used to produce methanoic acid. What type of substance reacts with methanol to produce methanoic acid?	[1 mark]

05. This question is about polymers.

Polyesters are produced when monomers join together and lose a small molecule.

Name the small molecule lost.

[1 mark]

Poly(propene) is produced from propene.

Complete the structure of poly(propene) in the equation.

[3 marks]

- Carpets are made from:
 - poly(propene)
 - wool
 - · a mixture of poly(propene) and wool.

Poly(propene) wears out more slowly than wool.

A mixture of poly(propene) and wool to make carpets is more sustainable than using just poly(propene) or just wool.

Suggest why.

[2 marks]

Polymer fibres are used to make firefighter uniforms.

Table 3 shows some properties of two polymer fibres.

Table 3

	Polymo	er fibres
Property	Poly(propene)	Polyester
Density in g/cm ³	0.90	1.38
Melting point in °C	165	260
Flame resistance	Poor	Good
Water absorption	Low	High

		[4 marl

06.

This question is about crude oil and hydrocarbons.

Figure 1 shows a fractionating column used to separate crude oil into fractions.

Figure 1

Table 1 gives information about some of the fractions.

Table 1

Fraction	Boiling point range in °C
Petroleum gases	Below 30
Petrol	40–110
Kerosene	180–260
Diesel oil	260–320
Heavy fuel oil	320–400
Bitumen	400–450

1	Suggest a suitable temperature for the furnace in Figure 1.	[1 mark] °C
2	Explain why diesel oil collects above heavy fuel oil but below kerosen fractionating column.	e in the
	Use Table 1.	[2 marks]
3	Suggest two reasons why bitumen is not used as a fuel. 1	[2 marks]
	2	
[Petrol contains mainly alkanes.	
_	Which of the following compounds is an alkane? Tick (✓) one box.	[1 mark]
	C ₂ H ₄	
	C ₄ H ₈ C ₈ H ₁₄	
	C ₈ H ₁₆	
	Large hydrocarbon molecules in the diesel oil fraction are cracked to hydrocarbon molecules.	produce smaller
].	Describe the conditions needed to crack hydrocarbon molecules from fraction.	n the diesel oil [2 marks]

6	Explain why large hydrocarbon molecules in the diesel oil fraction are craproduce smaller hydrocarbon molecules.	acked to [2 marks]
7	Complete the equation for the cracking of $C_{15}H_{32}$	[1 mark]
	$C_{15}H_{32} \rightarrow C_{12}H_{26} + $	

7. . 1	Some central heating boilers use wood as a fuel.
	Suggest two reasons why wood is more sustainable than natural gas as a fuel for central heating boilers.
	[2 marks]
	1
	2
	Natural gas is mainly methane.
	When methane burns it can produce both carbon monoxide and carbon dioxide.
2	Explain the process by which carbon monoxide can be produced when methane is
2	
. 2	Explain the process by which carbon monoxide can be produced when methane is burned.
. 2	Explain the process by which carbon monoxide can be produced when methane is burned.
. 2	Explain the process by which carbon monoxide can be produced when methane is burned.
. 2	Explain the process by which carbon monoxide can be produced when methane is burned.
. 3	Explain the process by which carbon monoxide can be produced when methane is burned.

Propane burns to form carbon dioxide and water.
The equation for the reaction is:
$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$
3.60 dm ³ carbon dioxide is produced when a sample of propane is burned in 7.25 dm ³ oxygen.
Calculate the volume of unreacted oxygen.
Give your answer in cm ³ [4 marks]
Volume of unreacted oxygen = cm ³

9

	Hydrogen is used to produce ammonia in the Haber process. The hydrogen is made in two stages.
	Stage 1 is the reaction of methane and steam to produce carbon monoxide and hydrogen.
	The equation for the reaction is:
	$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
1	Calculate the atom economy for the formation of hydrogen in stage 1.
	Relative atomic masses (A_r) : H = 1 C = 12 O = 16 [2 marks]

. 2	Explain why a low pressure is used in stage 1.
	Give your answer in terms of equilibrium. [2 marks]
. 3	Stage 2 uses the carbon monoxide produced in stage 1.
	The carbon monoxide is reacted with more steam to produce carbon dioxide and more hydrogen.
	The equation for the reaction in stage 2 is:
	$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$
	What is the effect of increasing the pressure on the equilibrium yield of hydrogen in
	stage 2? [1 mark]

Figure 10 shows the percentage yield of ammonia produced at different temperatures and pressures in the Haber process.

A temperature of 450 °C and a pressure of 200 atmospheres are used in the Haber process.

4	A student suggested that a temperature of 350 °C and a pressure of 285 atmospheres could be used instead of those used in the Haber process.	
	Determine how many times greater the percentage yield of ammonia obtained would be.	
	Use Figure 10. [3 marks]	
	Percentage yield = times greater	
5	A pressure of 285 atmospheres is not used in the Haber process instead of 200 atmospheres.	
	Give one reason why.	[1 mark]
ô	How does Figure 10 show that the forward reaction in the Haber process is exothermic?	
	exothermic:	[1 mark]
7	World production of ammonia is now about 30 times greater than it was in 19	50.
	Suggest why the demand for ammonia has increased.	[2 marks]

09.	This question is about hydrocar	bons.		
	Hexane and hexene are hydroc	arbons co	ntaining six carbon atoms in each m	olecule.
	Hexane is an alkane and hexen	e is an all	cene.	
.1	Draw one line from each hydrod	carbon to	the formula of that hydrocarbon. [2 marks]
	Hydrocarbon		Formula	
			C ₆ H ₈	
	Hexane	,	C ₆ H ₁₀	
		,	C ₆ H ₁₂	
	Hexene		C ₆ H ₁₄	
			C ₆ H ₁₆	
. 2	Bromine water is added to hexa	ne and to	hexene.	
	What would be observed when	bromine v	vater is added to hexane and to hexe	ene? 2 marks]
	Hexane			
	Hexene			

. 3 Ethane is an alkane and ethene is an alkene.

Figure 1 shows the displayed structural formulae of ethane and of ethene.

Figure 1

Compare ethane with ethene.

You should refer to:

- · their structure and bonding
- · their reactions.

[6 marks]
$- \overline{ }$

10.

This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

Table 3 shows information about the first three carboxylic acids in this homologous series.

Table 3

Name	Formula	pH of a 0.01 mol/dm³ solution
Methanoic acid		2.91
Ethanoic acid	СН₃СООН	3.39
	CH₃CH₂COOH	3.44

1	Complete Table 3.	[2 marks]
2	Ethanoic acid ionises in water. The equation for the reaction is: $CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$	
	Explain how the equation shows that ethanoic acid is a weak acid.	[2 marks]

_	A student adds a solution of ethanoic acid to zinc carbonate in an open flask on a balance.
	Explain what happens to the mass of the flask and its contents during the reaction. [3 marks
•	
-	
] .	The student compares the rates of the reaction of zinc carbonate with:
	 0.01 mol/dm³ methanoic acid
	0.01 mol/dm³ ethanoic acid.
,	The rate of the reaction with methanoic acid is greater than the rate of the reaction with ethanoic acid.
	Explain why.
	You should refer to ions in your answer.
	Use Table 3.
	[3 mark

Ethanoic acid reacts with ethanol to produce an ester.

5 Give the name of the ester produced when ethanoic acid reacts with etha	hanol
---	-------

[1 mark]

. 6 Hexanedioic acid and ethanediol join together to produce a polyester.

Ethanoic acid and ethanol join together in the same way to produce an ester.

Which is the displayed structural formula of the ester produced when ethanoic acid reacts with ethanol?

[1 mark]

Tick (✓) one box.

12

11. This question is about fuels and energy.

Figure 1 shows the percentage of electricity generated in the UK between 2007 and 2017 using:

- oil
- · solar energy.

Figure 1

- . 1 Describe the changes in the percentage of electricity generated in the UK between 2007 and 2017 using:
 - oil
 - · solar energy.

Use data from Figure 1 in your answer.

[3 marks]

2	Oil contains carbon and some sulfur.		
	When oil is burned, the products of combustion may be released into the atmosphere.		
	Explain the environmental effects of releasing these products of combustion into		
	the atmosphere. [6 marks]		

Suggest one reason why using solar energy is a more sustainable way of gelectricity than burning oil.	jenerating
	[1 mark]
Solar energy may not be able to replace the generation of electricity from fossil fuels completely.	
Suggest two reasons why.	
	[2 marks]
1	
2	

12.

This question is about alkanes.

Table 1 shows information about some alkanes.

Table 1

Number of carbon atoms in alkane molecule	Boiling point of alkane in °C
4	0
5	36
6	69
7	x
8	126
9	151

. 1 Plot the data from Table 1 on Figure 2.

Figure 2

[2 marks]

	Use Table 1 and Figure 2.		[1 mark
		X =	°C
□	Figure 2 is not suitable to show the bailing point of	of the alkana u	with three carbon
•	Figure 2 is not suitable to show the boiling point of atoms in a molecule.	or the alkane v	viii tiilee calboii
	Suggest one reason why.		[1 mark
1	What is the state at 20 °C of the alkane with four o	arbon atoms	in a molecule?

Table 1 is repeated below.

Table 1

Number of carbon atoms in alkane molecule	Boiling point of alkane in °C
4	0
5	36
6	69
7	x
8	126
9	151

The alkane with nine carbon atoms in a molecule is called nonane.

5	Complete the formula of nonane. [1	mark]
	C ₉ H	
6	Nonane will condense lower in a fractionating column during fractional distillation than the other alkanes in Table 1 .	n
	Explain why.	
	You should refer to the temperature gradient in the fractionating column. [2 r	narks]
-		
-		
-		8

- 13. This question is about poly(ethene) and polyesters.
- 1 Poly(ethene) is produced from ethene.

Figure 3 shows part of the displayed structural formula equation for the reaction.

Complete Figure 3.

[2 marks]

Figure 3

$$\begin{array}{cccc}
H & H \\
h & C = C
\end{array}
\longrightarrow
\left(\begin{array}{cccc}
H & H \\
C & C
\end{array}\right)$$

$$H & H$$

. 2	Poly(ethene) is a thermosoftening polymer.	
	Suggest why poly(ethene) is easier to recycle than thermosetting polymers.	[2 marks]
. 3	Ethene produces different forms of poly(ethene).	
	How can different forms of poly(ethene) be produced from ethene?	[1 mark]

- . 4 Two different forms of poly(ethene) are:
 - high density poly(ethene) (HDPE)
 - low density poly(ethene) (LDPE).

Figure 4 represents part of the structures of HDPE and LDPE.

Explain why HDPE has a higher density than LDPE.	[2 marks]

Figure 5 shows three monomers, A, B and C.

Monomer A can react with monomer B and with monomer C to produce polyesters.

Figure 5

. 5 Draw a circle on Figure 5 around an alcohol functional group.

[1 mark]

- . 6 Complete **Table 2** to show the formula of the small molecule produced when:
 - . monomer A reacts with monomer B
 - . monomer A reacts with monomer C.

Table 2

[1 mark]

Reacting monomers	Formula of small molecule produced
A and B	
A and C	

9

14.

This question is about copper wire and copper compounds.

Copper is used to make electrical wires.

Figure 1 shows how copper electrical wire is insulated using an addition polymer called poly(butene).

Figure 1

1 The addition polymer poly(butene) has the displayed structural formula:

$$\begin{array}{c|cccc}
 & CH_3 & CH_3 \\
 & C & C \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\$$

Poly(butene) is produced from the monomer butene.

Complete Figure 2 to show the displayed structural formula of butene.

[2 marks]

Figure 2

2	Suggest why poly(butene) insulation must be removed from scrap copper wire before the copper is recycled.
	[1 mark]
. 3	Describe how scrap copper wire can be recycled to make new copper water pipes. [2 marks]
4	Suggest two reasons why recycling scrap copper is more sustainable than extracting copper from copper ores.
	[2 marks]
	1
	2

	Copper sulfate is a compound of copper.	
	Copper sulfate solution contains copper(II) ions and sulfate ions.	
5	A solution can be added to copper sulfate solution to show the presence of copper(II) ions. Name the solution added.	
	Give the result of the test. [2 marks]	
	Name of solution added	
	Result	
6	Describe one test to show the presence of sulfate ions in copper sulfate solution.	
	Give the result of the test. [2 marks]	
	Test	
	Result	
		11

15.	This question is about the fractions obtained from crude oil.
-----	---

1 Crude oil is separated into fractions by fractional distillation.

The fractions obtained from crude oil include:

- · lubricating oil
- naphtha
- · petroleum gases.

Table 3 shows the boiling point range of these fractions.

Table 3

Fraction	Boiling point range in °C
Lubricating oil	300–350
Naphtha	90–200
Petroleum gases	< 25

Explain how these fractions are obtained from crude oil by fractional of	distillation.
	[4 marks]

].	2	Fractions from crude of petrochemical industry		rocessed to prod	duce feedstock for the	
		Which two are useful	materials p	roduced from thi	is feedstock?	[2 marks]
		Tick (✓) two boxes.				[2 marks]
		Alloys				
		Ceramics				
		Detergents				
		Fertilisers				
		Solvents				
3	Pe	rol contains a hydroca	arbon with	the formula C ₉ l	H ₂₀	
	Со	mplete the equation fo	or the com	plete combustic	on of C9H20	
	Yo	u should balance the e	equation.			[2 marks]
	C	H ₂₀ +		—	+	
4	Pe	rol obtained from crud	le oil conta	ains sulfur impu	ırities.	
	Ex	olain why sulfur impuri	ties are re	moved before	petrol is burned in car e	ngines. [2 marks]
	_					
	_					

. 5 Table 4 shows information about two more fractions obtained from crude oil.

Table 4

Fraction	Range of number of carbon atoms in each molecule
Kerosene	11–15
Heavy fuel oil	20–40

A student predicted that heavy fuel oil is more viscous than kerosene.	
The student's prediction was correct.	
Justify the student's prediction.	[2 marks]
	[Z marks]

The heavy fuel oil fraction can be processed to produce smaller

hydrocarbon molecules.

6 Name the process which produces smaller hydrocarbon molecules from heavy fuel oil. Give the conditions used in this process. [3 marks] Name of process Conditions 7 Hydrocarbon molecules containing seven and eight carbon atoms can be produced when heavy fuel oil is processed. Which pair of hydrocarbon molecules would both turn bromine water colourless? [1 mark] Tick (✓) one box. C7H14 and C8H16 C7H14 and C8H18 C7H16 and C8H16 C7H16 and C8H18 16

16.

This question is about alcohols and carboxylic acids.

Alcohols are used as fuels.

A student burned 1.00 g of six alcohols and determined the energy released from each.

Table 2 shows the results.

Table 2

Alcohol Formula of one molecule of the alcohol		Energy released in kJ/g
Ethanol C ₂ H ₅ OH		29.6
Propanol C ₃ H ₇ OH		33.6
Butanol	C₄H ₉ OH	36.1
Pentanol C ₅ H ₁₁ OH		37.7
Hexanol	C ₆ H ₁₃ OH	38.9
Heptanol	C ₇ H ₁₅ OH	39.8

1	Calculate the mass of ethanol that must be burned to release the same amount of energy as burning 1.00 g of heptanol.
	[2 marks]
	Mass =g
2	The energy released in kJ/g varies with the number of carbon atoms in one molecule of each alcohol.
	Plot the data from Table 2 on Figure 2. [2 marks]

3 Estimate the energy released in kJ when 1.00 g of octanol (C₈H₁₇OH) is burned.

Use Figure 2.

[1 mark]

Energy released = k.

	Carbon dioxide is produced when alcohols are burned.
	Carbon dioxide is identified by bubbling the gas through limewater.
4	Complete the sentence.
	Choose the answer from the box. [1 mark]
	calcium chloride calcium hydroxide calcium nitrate calcium sulfate
	Limewater is an aqueous solution of
5	Give the result of the test when carbon dioxide is bubbled through limewater. [1 mark]

. 6	What is reacted with ethanol	to produce ethanoic acid?	[4 mark]
	Tick (✓) one box.		[1 mark]
	A halogen		
	An alkali metal		
	An oxidising agent		
	Water		
. 7	Ethanoic acid contains the fu	nctional group –COOH	
	Complete the displayed struc	tural formula of this functional group.	[1 mark]
		-c o	
		O _ U	

ethanoic acid.	[2 m
Compound	Product of the reaction with ethanoic acid
	Carbon dioxide
Ethanol	Ethene
	Ethyl ethanoate
Sodium carbonate	Hydrogen
	Poly(ethene)

. 8 Ethanoic acid reacts with different compounds.

This question is about polymers.

Chloroethene can be used to produce an addition polymer called poly(chloroethene).

The displayed structural formula of chloroethene is

1 Draw a circle around the functional group on the displayed structural formula that allows chloroethene to produce an addition polymer.

[1 mark]

2 Complete the equation for the production of poly(chloroethene) from chloroethene.

[3 marks]

$$\begin{array}{ccc}
H & Cl \\
| & | \\
n & C = C \\
| & | \\
H & H
\end{array}$$

Poly(ethene) can be strengthened with wood particles to make a building material.

The building material consists of a wood particle reinforcement embedded in a poly(ethene) matrix.

What general name is given to materials like this?

[1 mark]

	H ₂ NCH ₂ CH ₂ COOH	
Beta-alanine polymerises to pi	oduce a polypeptide and a small mole	ecule.
Name the small molecule prod	uced when beta-alanine polymerises.	[1 m
An amino acid can be represe	nted as:	
H ₂ N	1———— соон	
The relative formula mass (M	of this amino acid is 75	
Calculate the relative formula represented by	mass of the section of this amino acid	molecule
Relative atomic masses (A _r):	H = 1 C = 12 N = 14 O = 16	[2 ma

Figure 6 represents part of a naturally occurring polymer molecule produced from glucose.

Figure 6

6 Draw a circle around the repeating unit in the polymer in Figure 6.

[1 mark]

7 Suggest the identity of this polymer.

[1 mark]

Figure 7 represents the structure of a naturally occurring polymer.

Figure 7

8	Give the general name for the four different monomers which make up the str shown in Figure 7 .	ructure [1 mark]	
9	Name the shape of the structure shown in Figure 7 .	[1 mark]	12