Motion GCSE AQA Higher Physics Past Papers Questions

01.

A student suspended a spring from a laboratory stand and then hung a weight from the spring.

Figure 1 shows the spring before and after the weight is added.

1 Measure the extension of the spring shown i	n Figure 1 .	[1 mark]
	Extension =	mm

The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Before starting the investigation the student wrote the following prediction:

The extension of the spring will be directly proportional to the weight hanging from the spring.

Figure 2 shows how the student arranged the apparatus.

Figure 2

2 Before taking any measurements, the student adjusted the ruler to make it vertical.

Explain why adjusting the ruler was important.

[2 marks]

The student measured the extension of the spring using a range of weights.

The student's data is shown plotted as a graph in Figure 3.

Figure 3

3 What range of weight did the student use?

[1 mark]

4 Why does the data plotted in Figure 3 support the student's prediction?

[1 mark]

Describe **one** technique that you could have used to improve the accuracy of the measurements taken by the student.

[2 marks]

The student continued the investigation by increasing the range of weights added to the spring.

All of the data is shown plotted as a graph in Figure 4.

Figure 4

At the end of the investigation, all of the weights were removed from the spring.

What can you conclude from Figure 4 about the deformation of the spring?

[2 marks]

Give the reason for your conclusion.

02.

A train travels from town A to town B.

Figure 14 shows the route taken by the train.

Figure 14 has been drawn to scale.

Figure 14

. 1	The distance the train travels between A and B is not the same as the displacement of the train.
_	the train.

What is the difference between distance and displacement?

[1 mark]

. $\begin{tabular}{ll} \bf 2 \end{tabular}$ Use Figure 14 to determine the displacement of the train in travelling from A to B.

Show how you obtain your answer.

[2 marks]

Displacement = km

Direction = _____

3	There are places on the journey where the train accelerates without changing speed.
	Explain how this can happen. [2 marks]

Figure 15 shows how the velocity of the train changes with time as the train travels along a straight section of the journey.

Figure 15

Estimate the distance travelled by the train along the section of the jour Figure 15.	rney shown in
To gain full marks you must show how you worked out your answer.	[3 marks]
Distance =	m

03.

The stopping distance of a car is the sum of the thinking distance and the braking distance.

Table 4 shows how the thinking distance and braking distance vary with speed.

Table 4

Speed in m/s	Thinking distance in m	Braking distance in m
10	6	6.0
15	9	13.5
20	12	24.0
25	15	37.5
30	18	54.0

. 1	What is meant by the braking distance of a vehicle? [1 mark
. 2	The data in Table 4 refers to a car in good mechanical condition driven by an alert driver.
	Explain why the stopping distance of the car increases if the driver is very tired. [2 marks

3	A student looks at the data in Table 4 and writes the following:
	thinking distance ∞ speed
	braking distance ∞ speed
	Explain whether the student is correct.
	[2 marks]
	Applying the brakes with too much force can cause a car to skid. The distance a car skids before stopping depends on the friction between the road
	surface and the car tyres and also the speed of the car.
	Friction can be investigated by pulling a device called a 'sled' across a surface at constant speed.
	Figure 16 shows a sled being pulled correctly and incorrectly across a surface.
	The constant of friction for the surface is calculated from the value of the force pulling the sled and the weight of the sled.
	Figure 16
Piece of tyre rubbe	Sled Pulling force Incorrect X
ш	y is it important that the sled is pulled at a constant speed? [1 mark]
lf th	ne sled accelerates it will be difficult to control.
	ne sled accelerates the value for the constant of friction will be wrong.
1f +1	ne sled accelerates the normal contact force will change

If the sled is pulled at an angle to the surface the value calculated for the constant of friction would not be appropriate.
Explain why.
[2 marks]
By measuring the length of the skid marks, an accident investigator determines that the distance a car travelled between the brakes being applied and stopping was 22 m.
The investigator used a sled to determine the friction. The investigator then calculated that the car decelerated at 7.2 $\mbox{m/s}^2.$
Calculate the speed of the car just before the brakes were applied.
Give your answer to two significant figures.
Use the correct equation from the Physics Equation Sheet.
[3 marks]
Speed = m/s

04. A child drops a ball.

The ball hits the ground and bounces.

Figure 1 shows the velocity-time graph for the ball from when the ball is dropped until when the ball reaches the top of its first bounce.

Air resistance has been ignored.

Figure 1

1	Describe the motion of the ball between points A and B on Figure 1.	[2 marks]
2	What direction is the ball moving between points C and D on Figure 1?	[1 mark]

	3	The ball and the Earth form a system.		
		What is meant by 'a system'?		
		Tick one box.		[4 mark]
				[1 mark]
		A group of objects that interact.		
		Objects with big differences in mass.		
		Objects with gravitational potential energy.		
. 4	When	the ball hits the ground, energy is transferred fr	om the ball to the Earth.	
	Explai	n how the data in Figure 1 shows this energy tr	ansfer. [4 marks]	
				8

05.

An aeroplane is 4000 m above the Earth's surface.

A skydiver jumps from the aeroplane and falls vertically.

Figure 15 shows the distance the skydiver falls during the first 12 seconds after jumping.

Figure 15

1 Figure 16 shows part of the free body diagram for the skydiver three seconds after jumping.

Complete the free body diagram for the skydiver.

[2 marks]

	the skydiver.	arks]
	[4.11	iai koj
Us	e Figure 15 to determine the speed of the skydiver between 7 seconds d 12 seconds.	
u	d 12 december.	[3 m
_		
_		

4	In 2012 a skydiver jumped from a helium balloon 39 000 metres above the Earth's surface. The skydiver reached a maximum speed of 377 m/s
	Jumping from 39 000 metres allowed the skydiver to reach a much higher speed than a skydiver jumping from 4000 metres.
	Explain why. [3 marks]

06.

. 1 Table 3 gives the frequencies in the hearing ranges of five different animals.

Table 3

Animal	Frequencies of hearing range
Cat	55 Hz to 77 kHz
Chicken	125 Hz to 2 kHz
Dog	20 Hz to 30 kHz
Gerbil	56 Hz to 60 kHz
Horse	55 Hz to 33 kHz

Which **one** of the animals from **Table 3** would not be able to hear ultrasound? [1 mark]

Figure 17 shows ultrasound being used to detect a hidden crack in a solid aluminium object. The transmitted and reflected pulses of ultrasound are shown on the screen.

Figure 17

07.			
	Which of the follow	ving is the same as 2 microseconds?	[1 mark]
	Tick (✓) one box.		[Timark]
	2 x 10 ³ s		
	2 x 10 ⁻³ s		
	2 x 10 ⁻⁶ s		
	2 x 10 ⁻⁹ s		

08.

Ultrasound travels at 6300 m/s in aluminium.

Determine the depth of the crack below the top surface of the aluminium.

Use information from Figure 17.

Give your answer to **two** significant figures.

	[4 marks]
Depth =	m

Figure 18 shows the parts of a moving-coil microphone.

Figure 18

Describe the motion of the car during the first 30 seconds.

[1 mark]

LO	Determine the speed of the car 20 seconds after it started to move.	[4 marks]
	Speed =	m/s

1.		
	Explain why the car has a maximum speed.	[4 marks]

12. Figure 11 shows a cyclist riding a bicycle.

Force A causes the bicycle to accelerate forwards.

Figure 11

. 1 What name is given to force A?

[1 mark]

Figure 12 shows how the velocity of the cyclist changes during a short journey.

Figure 12

2	Determine the distance travelled by the cyclist between Y and Z.	[3 marks]
	Distance travelled by the cyclist between Y and Z =	m

3 Figure 13 shows the gears on the bicycle.

Figure 13

Describe how the force on the pedal causes a moment about the rear axle.

[2 marks]

Figure 14 shows a different cyclist towing a trailer.

Figure 14

	Acceleration = m	le ²
		_
		—
		—
		_
	Calculate the initial acceleration of the cyclist. [3 mark	s]
	Coloulate the initial appalaustion of the quality	
	The cyclist travelled 0.018 km while accelerating.	
4	The speed of the cyclist and trailer increased uniformly from 0 m/s to 2.4 m/s.	

vertical for	orce = 200 N		
vertical lon	.e - 75 N		
Determine	the magnitude and di	rection of the resultant force	of the towbar on
trailer by di	awing a vector diagra	ım.	
			[4
			1
			###### I

13.

Figure 1 shows an electric super-car.

Figure 1

	Suggest two factors that affect the distance an electric car can travel before the attery needs to be recharged.
	[2 mar
1	
2	-
	Use the Physics Equations Sheet to answer questions 01.2 and 01.3.
2	Write down the equation which links acceleration (a), change in velocity (Δv) and time taken (t).
	[1 mark]
	The maximum acceleration of the car is 20 m/s ² .
	Calculate the time taken for the speed of the car to change from 0 m/s to 28 m/s at its maximum acceleration.
	maximum acceleration. [3 marks]

Final velocity = m/s Use the Physics Equations Sheet to answer questions 01.5 and 01.6. S Write down the equation which links distance (s), force (F) and work done (W). [1 mark] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed.		
initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet. [3 marks] Final velocity = m/s Use the Physics Equations Sheet to answer questions 01.5 and 01.6. [4 marks] Write down the equation which links distance (s), force (F) and work done (W). [1 marks] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]] In	a trial run, the car accelerates at 10 m/s ² until it reaches its final velocity.
Calculate the final velocity of the car. Use the Physics Equations Sheet. [3 marks] Final velocity = m/s Use the Physics Equations Sheet to answer questions 01.5 and 01.6. [1 mark] Write down the equation which links distance (s), force (F) and work done (W). [1 mark] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]	dis	tance travelled by the car = 605 m
Use the Physics Equations Sheet. Final velocity = m/s Use the Physics Equations Sheet to answer questions 01.5 and 01.6. Write down the equation which links distance (s), force (F) and work done (W). [1 mark] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]	init	ial velocity of the car = 0 m/s
Final velocity = m/s Use the Physics Equations Sheet to answer questions 01.5 and 01.6. 5 Write down the equation which links distance (s), force (F) and work done (W). [1 mark] 6 When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]	Ca	lculate the final velocity of the car.
Use the Physics Equations Sheet to answer questions 01.5 and 01.6. Write down the equation which links distance (s), force (F) and work done (W). [1 mark] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]	Us	e the Physics Equations Sheet. [3 marks]
Use the Physics Equations Sheet to answer questions 01.5 and 01.6. Write down the equation which links distance (s), force (F) and work done (W). [1 mark] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]		
Use the Physics Equations Sheet to answer questions 01.5 and 01.6. 5 Write down the equation which links distance (s), force (F) and work done (W). [1 mark] 6 When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]	_	
Use the Physics Equations Sheet to answer questions 01.5 and 01.6. Write down the equation which links distance (s), force (F) and work done (W). [1 mark] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]		
Write down the equation which links distance (s), force (F) and work done (W). [1 mark] When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]		Final velocity = m/s
When travelling at its maximum speed the air resistance acting on the car is 4000 N. Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]		Use the Physics Equations Sheet to answer questions 01.5 and 01.6 .
Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]	. 5	Write down the equation which links distance (s), force (F) and work done (W). [1 mark]
Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed. [3 marks]		
7.5 km at its maximum speed. [3 marks]	. 6	When travelling at its maximum speed the air resistance acting on the car is 4000 N.
		Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed.
Work done = J		[3 marks]
Work done = J		
Work done = J		
Work done = J		

1	4. Speed limits on roads increase safety.	
1	The braking distance of a car increases as the speed of the car increases. Give two other factors that increase the braking distance of a car.	[2 marks]
2	2 Explain why the driver's reaction time affects the thinking distance of a car.	
		[2 marks]
3	Scientists have investigated how drinking alcohol affects a person's reaction	n time.

Figure 5 shows the results of the investigation.

Which of the following conclusions can be made using Figure 5? Tick (✓) two boxes.	[2 marks]
Every person's reaction time increases after drinking alcohol.	
Mean reaction time increases after drinking alcohol.	
Some people's reaction time is not affected by drinking alcohol.	
The change in reaction time is not the same for all people after drinking alcohol.	
There is a smaller range of reaction times after drinking alcohol.	

Figure 6 shows some speed cameras on a road.

The speed cameras determine the average speed of cars on the road.

]. 4 The speed limit on the road in Figure 6 is 20 m/s.

The cameras in Figure 6 are 1.5 km apart.

Calculate the minimum time it takes to travel 1.5 km without breaking the speed limit.

Use the Physics Equations Sheet.

	rks]

	[4 mark
Minimum time =	s

5	The average speed of a car between the cameras and the average velocity of the car between the cameras are different.		
	Explain why. [3 marks]		

Hailstones are small balls of ice. Hailstones form in clouds and fall to the ground.

Figure 7 shows different-sized hailstones.

Figure 7

A hailstone falls from a cloud and accelerates.

accelerating and reaches terminal velocity	city.
Istone reaches terminal velocity.	[3 marks]
	s accelerating and reaches terminal velocity.

A scientist investigated how the mass of hailstones affects their terminal velocity.

Figure 8 shows the results.

Figure 8

3	Why does terminal velocity increase with mass? Tick (✓) one box.	[1 mark]
	As mass increases the cross-sectional surface area of a hailstone increases.	
	As mass increases the volume of a hailstone increases.	
	As mass increases the weight of a hailstone increases.	

Explain the difference in the maximum kinetic energy of a hailstone with a 10 g and a hailstone with a mass of 20 g.		
		[3 marks]
5	The kinetic energy of a hailstone is measured in joules.	
	Which of the following is the same as 1 joule?	[1 mark]
	Tick (✓) one box.	[Timark]
	1 Nm	
	1 N/m	
	1 N/m²	
	1 N m ²	

Figure 8 is repeated below.

6 A hailstone hit the ground at its terminal velocity of 25 m/s.

The hailstone took 0.060 s to stop moving.

Determine the average force on the hailstone as it hit the ground.

Use information from Figure 8.

Use the Physics Equations Sheet.

[3 marks]

Average force = _____N

12

16. Figure 3 shows the route an aeroplane takes as it travels from an airport terminal to the runway.

Figure 3 has been drawn to scale.

Figure 3

Scale: 1 cm represents 70 m

1	Determine the magnitude of the aeroplane's displacement from the start point to the finish point on Figure 3 .
	[2 marks]

Figure 4 shows the direction of the horizontal forces acting on the aeroplane as it moves in a straight line towards the runway.

Figure 4

. 2	Determine the magnitude of the resultant horizontal force on the aeroplane.	[1 mark]
	Resultant horizontal force =	N
. 3	Describe the motion of the aeroplane as it moves towards the runway.	[1 mark]
. 4	Air resistance and friction are contact forces. Give one other example of a contact force.	[1 mark]

. 5 The aeroplane stops for a short time and then accelerates along the runway.

Figure 5 shows a distance-time sketch-graph for this stage of the journey.

Figure 5

Draw the velocity–time sketch-graph for this stage of the journey on Figure 6. [2 marks]

Figure 6

. 6 The aeroplane takes off from the runway, so its height above the ground increases.

Figure 7 shows how atmospheric pressure varies with the height of the aeroplane above the ground.

Figure 7

Estimate the atmospheric pressure when the height of the aeroplane above the ground is 10 km.

	[2 marks]
Atmospheric pressure =	kPa

. 7	What happens to the air surrounding the aeroplane as the height of the above the ground increases?	e aeroplane [1 mark]
	Tick (✓) one box.	
	The average density of the air above the aeroplane decreases.	
	The mass of air above the aeroplane increases.	
	The temperature of the air increases.	
	The volume of air below the aeroplane decreases.	