
Material Physics GCSE AQA Higher Physics Past Papers Questions

01. | Figure 17 shows a student before and after a bungee jump.

The bungee cord has an unstretched length of 20.0 m.

The mass of the student is 50.0 kg.

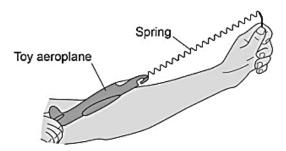
The gravitational field strength is 9.8 N/kg.

Write down the equation which links gravitational field strength, gravitational potential energy, height and mass.

[1 mark]

Calculate the change in gravitational potential energy from the position where the student jumps to the point 20.0 m below.

[2 marks]


Change in gravitational potential energy = J

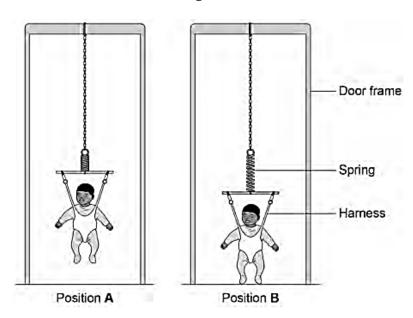
3	80% of this change in gravitational potential energy has been transferred to student's kinetic energy store.	the
	How much has the student's kinetic energy store increased after falling 20.0) m?
		[1 mark]
	Kinetic energy gained =	J
4	Calculate the speed of the student after falling 20.0 m.	
	Give your answer to two significant figures.	[4 marks]
	Speed =	m/s
5	At the lowest point in the jump, the energy stored by the stretched bungee cord is 24.5 kJ.	
	The bungee cord behaves like a spring.	
	Calculate the spring constant of the bungee cord.	
	Use the correct equation from the Physics Equation Sheet. [3 marks]	
	Coring constant - N/m	

02. Figure 11 shows a student launching a toy aeroplane.

To launch the aeroplane, the student pulls on it to stretch the spring and then releases it.

Figure 11

	ist before the toy aeroplane is released, the spring has an extension of 0.13	2 m.
ma	ass of aeroplane = 0.020 kg	
sp	oring constant of the spring = 50 N/m	
Ca	alculate the maximum speed of the toy aeroplane just after it is launched.	
Us	se the Physics Equations Sheet.	
Gi	ive the unit.	
		[6 marks]
_		
_		
_		
_		
_		
_ _ _		


. 2	Complete the sentence.	[1 mark]
	As the aeroplane moves upwards through the air there is a decrease	
	in the energy of the aeroplane.	
. 3	Give one factor which would increase the distance the toy aeroplane travel horizontally before hitting the ground.	s [1 mark]

03.

A baby bouncer is a harness attached to a spring that hangs from a door frame.

Figure 7 shows a baby in a baby bouncer in two positions.

Figure 7

1	The baby bouncer should not be used with babies that have a mass greater than 12 kg.	
	Suggest one reason why.	[1 mark]

2	In positions A and B the baby is stationary.
	Describe the energy transfers as the baby moves from position A to position B. [3 marks]

In one position the extension of the spring is 8.0 cm. The elastic potential energy stored by the spring is 4.0 J.	
Calculate the spring constant of the spring.	
[4 marks]	
Spring constant =N/m	
(The elastic potential energy stored by the spring is 4.0 J. Calculate the spring constant of the spring. Use the Physics Equations Sheet. [4 marks]