Material Physics GCSE AQA Higher Physics Past Papers Answers

01.

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1	g.p.e. = mass × gravitational field strength × height	accept E _p = mgh	1	AO1/1 4.1.1.2
2	E _p = 50 × 9.8 × 20 9800 (J)	allow 9800 (J) with no working shown for 2 marks answer may also be correctly calculated using W = Fs ie allow W = 490 x 20 for 1 mark or answer of 9800 (J) using this method for 2 marks	1 1	AO2/1 4.1.1.2
3	7840 (J)	allow ecf from '11.2'	1	AO2/1 4.1.1.2
4	$7840 = \frac{1}{2} \times 50 \times v^{2}$ $v = \sqrt{\frac{7840}{1/2 \times 50}}$	allow $v^2 = \frac{7840}{(1/2 \times 50)}$ for this point	1	AO2/1 4.1.1.2
	17.7(0875) (m/s) 18 (m/s)	allow ecf from '11.3' correctly calculated for 3 marks allow 18 (m/s) with no working for 2 marks answer may also be correctly calculated using $v^2 - u^2 = 2as$	1	
5	extension = 35 (m) and conversion of 24.5 kJ to 24500 J 24 500 = ½ x k x 35 ² 40	allow 40 with no working shown for 3 marks an answer of '16.2' gains 2 marks	1 1 1	AO2/2 4.1.1.2 WS4.3
Total			11	

02.

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1	$E_{\rm e} = 0.5 \times 50 \times 0.12^2$		1	AO2 4.1.1.2
	$E_{\rm e} = 0.36 ({\rm J})$		1	4.1.1.2
	$0.36 = 0.5 \times 0.020 \times v^2$	allow a correct substitution of their calculated value of E_{e}	1	
	$v^2 = \frac{0.36}{0.5 \times 0.020}$	allow a correct rearrangement of their calculated value of E_e	1	
	$v^2 = 36$			
	speed = 6.0	allow an answer consistent with their calculated value of E _e	1	
	m/s		1	
	or metres/second			
		Alternative approach: (F = ke) (F = 50 × 0.12) (maximum) F = 6.0 (N) (1)		
		(F = ma) (6.0 = 0.020 × a) (maximum) $a = 300$ (m/s ²) (1)		
		mean a = 150 (m/s ²)(1)		
		$(v^2 - u^2 = 2as)$ $v^2 = 2 \times 150 \times 0.12$ (1) or $v^2 = 36$		
		v = 6.0 (1)		
		m/s (1)		
		or metres/second		
		metres/second		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
2	kinetic		1	AO1 4.1.1.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
3	increasing the extension of the spring or more elastic potential energy or increase the angle of release (to the horizontal by a small amount)	allow other factors that would increase the horizontal distance travelled eg a tail-wind ignore factors without a change specified e.g. extension unqualified would not score ignore changing the spring or changes to the toy aeroplane	1	AO2 4.1.1.1

Total Question		8
----------------	--	---

03.

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1	spring may become permanently extended or extension of the spring may be too great (so the baby's feet are always on the floor)	ignore reference to limit of proportionality allow the harness / spring / chain may break ignore baby may be injured / harmed / may hit doorframe	1	AO3 4.1.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
2	(in position A) the baby has gravitational potential energy	allow E _p for gravitational potential energy	1	AO1 4.1.1.1
	(as the baby moves down this) is transferred to kinetic energy (of the baby) and / then elastic potential energy (of the spring) (in position B) all the energy is elastic potential energy	allow E _k for kinetic energy allow E _e for elastic potential energy ignore energy dissipated to the surroundings	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
3	e = 0.080 (m)		1	AO2 4.1.1.2
	$4.0 = \frac{1}{2} \times k \times 0.080^2$	allow a correct substitution using an incorrectly / not converted value of e	1	
	$k = \frac{4.0}{(0.5 \times 0.080^2)}$	allow a correct rearrangement using an incorrectly / not converted value of e	1	
	k = 1250 (N/m)	allow an answer consistent with their value of e	1	

Total Question 8