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Inequalities As level Edexcel Maths Past Papers Answers

01.

Question Scheme Marks | AOs
Realises that £ = 0 will give no real roots as equation becomes 3 =
A Bl 3.la
0 {proof by contradiclion)
(For k = 0)quadratic has noreal roots provided
s M1 24
b* <4ac so 165" <12k
4k (4% —3) < Owith attempt at solution M1 1.1b
So 0<k<3, which together with k=0 gives 0 < k<3 * Al* 21
(4 marks)

Notes

Bl : Explains why &= 0 gives no real rools
M1 : Considers discriminant to give quadratic inequality — does not need the & = 0 for this

mark

M1 : Attempis solution of quadratic inequality

A1*: Draws conclusion, which is a printed answer, with no errors (dependent on all three
previous marks)
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Question Scheme Marks | AOs
20| 2o gxr17=(x-4) -16+17 Ml | 3.1a
= [x“zl)2 +1 with comment (see notes) Al 1.1b
As (x-4)'20 =(x—-4)" +1>1 hence ¥’ ~8x+17>0 forallx | Al | 24
3)
(ii) For an explanation that it may not always be true
Tests say x=-5 [—5-1—3}2 =4 whereas [—-5)2 =25 M1 23
States sometimes true and gives reasons
Eg when x=5 (5+3)° =64 whereas (5)° =25 True Al | 24
When x=-3 (--5-1—3)2 =4 whereas (—-5)2 =25Not true
2)
(5 marks)
Notes

{i) Method One: Completing the Square
M1: For an attempt lo complete the square. Accept {x—4)2

Al: For (_x--dl)2 +1 with either (x—4)220,(x—-4}2 +121 or min at (4,1). Accept the inequality

. 2 . .. .
statements 1n words. Condone (x -4) > 0 or a squared number 1s always positive for this mark.

Al: A fully written out solution, with correct statemenis and no incorrect stalements. There must
be a valid reason and a conclusion

=(x-4) +1=1as (x-4) 20
Hence (x—4):+l‘;- 0

X —8x+17>0
(x=4) +1>0

This is true because (x —4)2 20 and when you add 1 it is going Lo be posilive

scores M1 Al Al

X —8x+17>0
scores M1 Al AQ

(x-4) +1>0

which is true because a squared number is positive incorrect and incomplete
X —-8x+17=(x-4) +1 scores M1 Al AD
Minimum 1s (4,1} so 34:2 —-8x+17=0 correct but not explained
x -8 +17=(x-4) +1 scores M1 Al Al

Minimum is (4,1} s0as 1 >0 = X —8x+17>0 correct and explained
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X —8x+17>0

. scores M1 A0 (no explanation) A0
(x-4) +1>0

Method Two: Use of a discriminant

M1: Attempts to find the discriminant b —4ac with a correct a, b and ¢ which may be within a
quadratic formula. You may condone missing brackets.

Al: Correct value of bz —4dac =—4 and states or shows curve is U shaped (or intercept is (0,17))

B 2
or equivalent such as +ve x ele

Al: Explains that as 5 —4ac <0, there are no roots, and curve is U shaped then X —8x+1750

Method Three: Differentiation
MI1: Attempting to differentiate and finding the turning point. This would involve attempting to

find %, then setting it equal to 0 and solving to find the x value and the y value.

d
Al: For differentiating Ey =2x-8=(4,1) is the turning point
Al: Shows that (4,1)is the minimum point (second derivative or U shaped), hence

X —8x+17>0

Method 4: Sketch graph using calculator

M1: Attempting to sketch y= x*=8x+17,U shape with minimum in quadrant one

Al: Asabove with minimum at (4,1) marked

Al: Required lo state that quadratics only have one turning point and as "1" is above the x-axis
then x —8x+17>0

(ii)

Numerical approach

Do not allow any marks if the candidate just mentions "positive” and "negative’ numbers.
Specific examples should be seen calculated if a numerical approach is chosen.

M1: Atternpts a value (where it is not true) and shows/implies that it 15 not true for that value.
For example, for —4 : (—4+3)2 > (=4)” and indicates not true (states not true, %)

or writing (-4 + 3)2 < (—4)?is sufficient to imply that it is not true
Al: Shows/implies that it can be true for a value AND states sometimes true.
For example for +4 : [4—}-3}2 > 4% and indicates true v’

or writing [4+3)2 > 4% is sufficient to imply this is true following (-4+3)2 < (—4)?

condone incorrect statements following the above such as ‘it is only true for positive numbers’ as
long as they state "sometimes true" and show both cases.
Algebraic approach

M1: Seis the problem up algebraically Eg. (_r +3}2 s x>k Any inequality 1s fine. You

may condone one error for the method mark. Accept (_r+ ?.]2 >x" = 6x+9>0 oe

. S 3 o
Al: Stales sometitnes true and states/implies true for x> —5or states/implies not true for

3 .
x<-3 In both cases you should expect to see the stalement "sometimes true” to score the Al
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Question Scheme Marks AOs
(2] | (e(-2))=4x-8-12x4-15x-2+50 MI L1b
g(-2)=0= (x+2) is a factor Al 24

(2)
(b) 3 1a?_ _ 2 MI L.Ib
4x’ =125 ~15x+50= (x+2)(4x" - 20x+25) Al '
2 MI 1.1b
=(x+2)(2x-5) Al 1.1b

(4)
_ ~ M1 1.1b
(© [ x<-2 x=25 All L1b
(iiy x=-1, x=125 Blfi 22a

3)
(9 marks)

Notes
(@

M1: Atiempls g(-2) Some sight of { -2 ) embedded or calculation is required.
So expect to see 4x(-2}3 —]2><(—2:}2 —15%(-2)+50 embedded

Or =32-48+30+50 condoning slips for the M1
Any attempt to divide or factorise i1s MO, (See demand in question)

Al: g(-2)=
Requires a correct statement and conclusion. Both " g(-2) =0" and "(x +2) is a factor" must be
seen in the solution. This may be seen in a preamble before finding g(—2) = 0but in these cases

0= (x+2) isa factor.

there must be a minimal statement 1e QED, "proved”, tick etc.

(b)

M1: Attempts to divide g(x) by (x+2)May be seen and awarded from part (a)

If inspection is used expeet to see 4x* —12x% —15x+50 = (x + 2}(4.:2 ............ + 25)

If algebraie / long division is used expect to see

4x +20x

x+2) 4 —12:% —15x +50

Al: Correct quadratic factor 1s (412 —20x+ 25) may be seen and awarded from part (a)

M1: Atlempts to factorise their (4x* —20x+ 25 )usual rule(ax+b)(cx+d), ac = +4,bd =25
Al: (x+2}(2x—-5)2 oe seen on a single line. (x+ 2){—2x+5]2 is also correct.

Allow recovery for all marks for g(x) =(x+2}(x—2.5:]2 =(x+2}(2x-5}2

(e)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for
either x< -2 or x=2.5 Follow through on their g(x)=(x+ 2][ax+b]2 only where ab <0 (that

is a positive root). Condone x < —2 See SC below for g(x)= (Jc+2)(23c+5)2
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Alft: BOTH x< =2, x=2.5  Follow through on their —g of their g[.‘r}=(x+2)(ax+b)2
May see {_rg —2[_Jx=2_5} which is fine.

(c) (i)
B1ft: For deducing that the solutions of g(2x)= 0 will be where x=-1 and x=125

Condone the coordinates appearing (-1,0) and (1.25,0)
Follow through on their 125 of their g(x)=(x+2)(ax+b)’

SC: If a candidate reaches g(x)=(x+ 2){2x+5)1, clearly incorrect because of Figure 2, we will

award
In (i) M1 AQ for x< —20r x< =2

In (ii) Bl for x=—1 and x=-1.25

Alt(®) | 2 —12x7 ~15x+50 = (x+2)(ax +b)’
=a’x +(2bn +24° ]xl +(B” +4ab)x + 25"

Compares terms to get either a or b M1 L.1b

Either ¢=2 or b=-5 Al 1.1b

Multiplies out expression (x+2)(+2x+ 5)2 and compares to

4% —12x2 —15x+50 Ml

All terms must be compared or else expression must be
multiplied out and establishes that Al 11b

4x* =12x* ~15x+50 = (x +2)(2x -5’

Q)
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04.

Question Scheme Marks AOs
La | States (2a—b)"..0 M1 21
4a" +b'..Aab Al LIb
2 2
da b dab
—- M1 22a
(As a>0,0>0) — +ab'“nb
Hence %+g...4 * C80 Al* L.1b
4)
b
(b) a=5,b=-l:-%+%=—20-%which 15 less than 4 Bl 24
(1)
(5 marks)
Notes

(a) (condone the use of > for the first three marks)
M1:  For the key step in stating that (2a—5) ..0

Al:  Reachesda +b ...4ab

2 2

.. da b dab

M1: Duavid ht byab = —+—.. ——
1vVides each term yﬂ' -] ab +ﬂ'b ab

Al*: Fully correct proofl with steps in the correct order and gives the reasons why this is true:
* when you square any (real) number it is always greater than or equal to zero
» dividing by a# does not change the inequality as ¢ >0 and >0

(b)

Bl: Provides a counter example and shows it is not true.
This requires values, a caleulation or embedded values(see scheme) and a conclusion. The
conclusion must be in words eg the result does not hold or not true
Allow 0 to be used as long as they explain or show that it is undefined so the statement is
not true.
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Proof by contradiction: Scores all marks
4a

MI1:  Assume that there exisis an a,b > 0 such that 7

+244
a
2 2 2 2
Al: da +b <dab=4da +b —dab <0
MI:  (2a-b) <0

4a

Al*: Siates that this 1s not true, hence we have a coniradiction so 7

+§..A4 with the following

reasons given:

* when you square any (real) number it 15 always greater than or equal to zero
» dividing by ab does not change the inequalityas a>0 and 6>0

Attemnpt starting with the lefi-hand side

2 2
da b dq +b -4ab
MI: {lhs=]?"+z-4=u

ab
(2a-b)’
&0 —
Al ==
2a-4)’
mi: =228
ab
Al*: Hence 1—“+%—4...0:{Tﬂ+§...4 with the following reasons given:

* when you square any (real) number it 15 always greater than or equal to zero
» gbispositiveas a>0 and >0

Attempt using given result: For 3 out of 4

%‘14-%..4 Ml=4q +b ..dabb>4a +b —4ab..0

Al =(2a-b)..0 oe
M1 gives both reasons why this is true
s "square numbers are greater than or equal to 0"

+ “multiplying by ab does not change the sign of the
inequality because @ and b are positive”
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0> Question Scheme Marks | AOs
[] | Finds critical values x* —x>20=>x" —x-20>0=>x=(5-4) | Ml 1.1b
Chooses outside region for their values Eg x>=5,x <-4 M1 1.1b
Presents solution in set notation {x:x<—4}u{x:x>5} oe Al 75
(3)
(3 marks)
Notes

M1: Atiempis to find the crilical values using an algebraic method. Condone slips but an
allowable method should be used and two critical values should be found

M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities
such as 5<x <-4

Al: Presents in set notation as required {x :x <—4} u{x:x>5} Accept {x<—4ux=>5}.

Do not accept {x <—4, x> 5}

Mote: If there is a contradiction of their solution on different lines of working do not penalise
intermediate working and mark what appears to be their final answer.
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Question Scheme Marks AOs
| a | 9x-—-x3:x(9-—-x1) M1 1.1b
9—x*=x(3-x)(3+x) oe Al | Lib
@)
) K
A cubic with correct BI 11b
orientation X
3 o} 3 *
Passes though origin,
(3, 0) and (-3, 0) Bl L.1b
@)
() d
yzgx_f:;.Iyzg_3f:[}:>x=(i}-\,/§:>y=... ML | 3.la
X
7=(£)63 Al | Lib
{keD :—6J§<k<6«ﬁ} oe AlRt | 25
3
(7 marks)
Notes

(@)

MI:  Takes out a factor of x or — x . Scored for +x{+9+ x”) May be implied by the correct
answer or #x(+x+3)(tx+3).

Also allow if they attempt to take out a factor of (+x+3) so score for (+x+3)(+3x+x?)

Al Correct factorisation. x(3—x)(3 +x} on its own scores M1AL.

Allow eg —x(x—3)(x+3), x(x—3)(-x—3) or other equivalent expressions
Condone an = 0 appearing on the end and condone eg x written as (x+0).

(b)

Bl:  Correct shape (negative cubic) appearing anywhere on a set of axes. [t must have a
minimum to the left and maximum to the right. Be tolerant of pen slips. Judge the intent
of the shape. (see examples)

Bl:  Passes through each of the origin, (3, 0) and (=3, 0) and no other points on the x axis.
(The graph should not turn on any of these points).
The points may be indicated as just 3 and —3 on the axes. Condone x and y to be the
wrong way round eg (0,—3) for (=3, 0) as long as it is on the correct axis but do not

allow (-3, 0) to be labelled as (3, 0).




WWW LONDONMATHSTUTORS.CO.UK

3= 5, o - ..-.- |I --"\ h
\ \ o
! ;\fr\ _ E\\ﬂm [ \4 i 3\

c *Be aware the value of y can be solved directly using a caleulator which is not
¥ Y g
acceptable®

- W

(c) *Be aware the value of y can be solved directly using a calculator which is not
acceptahle"“

MI1: Uses a correct strategy for the y value of either the maximum or minimum. E.g.

differentiates to achieve a quadratic, solves % =(and uses their x to find y

Al:  Either or both of the values (i]ﬁ-q'ri .
Cannot be scored for an answer without any working seen.

Alfi: Correct answer in any acceptable set notation following through their 61@

Condone {"- 6\}’5" <k “'-“6\6"} or {"- ﬁ'\E" < k}ﬁ {k < "6@"} but not
(65" <Kol <65

Note: If there 13 a contradiction of their solution on different lines of working do not
penalise intermediate working and mark what appears to be their final answer.
Must be in terms of &
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07.

Shape in quadrant 1 or 3 M1 1.1b

Shape and Position | Al 1.1b

2)
(b) Deduces that x <0 Bl 2.2a
Attempts E2::> x...iE M1 1.1b
x
x<Dorx = 8 Alcso | 2.2a
)
{5 marks)
Notes:
(a)

M1: For the comrect shape in quadrant 1 or 3. Do not be concermed about position but it must not
cross either axis. Ignore incorrect asymptotes for this mark.

Al: Correct shape and position. There should be no curve in either quadrant 2 or quadrant 4.
The curve must not clearly bend back on itself but condone slips of the pen.

(b)

Bl: Deduces that x <0 but condone X< 0 for this mark.

M1: Attempls EZ = x...i? where the ... means any equality or inequality.
x

Al: csox<0or x 2 8 (Bothrequired)
Set notation may be seen {x: x< D} u{x: x;S} o.e. xe(-m, {}}U[S, w)

Accept x<0,x = 8 butnot x<Qand x = 8§

Must not be combined mcorrectly, e.g., 8 < x <0 or {x:xv:l]} ﬁ{x: x_,}"-;E}
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08.

8 Complete method to find the RHS of an equation for /

e.g., Attempts gradient = 8[}1;]60{:2} and uses intercept = 60 MI LIb
{y=}2x+60 Al 1.1b
Deduces the RHS of the equation for Cis {y =}¢11'|:x- 6) 1 -

and attempts to use (ID, 80) to find the value of a )
Equation of C1s {yz}.?.r(:(-ﬁ] Al 1.1b

2x(x=6) < y £ 2x+60 Blfi 2.5
(5)

{5 marks)

Notes:

M1: Complete attempt to use the given information to find an equation or inequality for /, which
may be /= or have no LHS. y— 80 =2(x — 10) is acceptable for this mark.

Al:  {y=}2x+60 This is not scored by y — 80 = 2(x — 10}

M1: Deduces the RHS of the equation of Cis {y :}ﬂx(_r-ﬁ], @ # 1, and attempts to use l:ll:l,Bﬂ]

to find the value of 2 which may be implied. Again, there may be no LHS.
Other possible and more lengthy alternatives mclude:

1) Setting the RHS to be {y=}a (x —3}2 + & and using {CI,D) and [10,80} to find 7 and b
2) Setting the RHS to be {y =} px: +¢x and using {6,0) and (10,80) to find p and ¢
Al: {_y :}2_1'[:: —6) or altemative such as {y =}2(x—3)2 -18 or {y =}2x: —12x
This may be implied by an inequality y...Zx(_r—ﬁ) and may be seen as, e.g., C= Ex[x-ﬁ]
Blft: " Z_r[x-ﬁ]“ £y % "2x+60" o.e. must follow from their / and C and apply isw

Follow through only on a quadratic for C and a straight line for /
Do not allow a mixture of inequalities, 1.e., < with <

Allow 2x —12x< y < 2x+60 or as separate inequalities y > 2x (_r - 6), y<2x+60
Do not allow 2_::{17-6] <R<2x+60 or 2x(x—6] <f{x)<2x+60 or 2xl:_r-ﬁ) <2x+60
Ignore any reference to =3 < x <10

Note: y=2x+60and y= Zx[x - 6) incomectly expanded to y= 2Jrz —12 followed by

2x1—12 £ 3 £ 2x+60 would score 11110
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