Differentiation As level Edexcel Maths Past Papers Answers

01.

Question	Scheme	Marks	AOs
	Attempt to differentiate	M1	1.1a
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 12$	A1	1.1b
	Substitutes $x = 5 \implies \frac{dy}{dx} =$	M1	1.1b
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 8$	A1ft	1.1b

(4 marks)

Notes

M1: Differentiation implied by one correct term

A1: Correct differentiation

M1: Attempts to substitute x = 5 into their derived function

A1ft: Substitutes x = 5 into their derived function correctly i.e. Correct calculation of their f'(5) so follow through slips in differentiation

02.

Question	Scheme	Marks	AOs
	Considers $\frac{3(x+h)^2 - 3x^2}{h}$	В1	2.1
	Expands $3(x+h)^2 = 3x^2 + 6xh + 3h^2$	M1	1.1b
	so gradient = $\frac{6xh + 3h^2}{h} = 6x + 3h$ or $\frac{6x\delta x + 3(\delta x)^2}{\delta x} = 6x + 3\delta x$	Al	1.1b
	States as $h \to 0$, gradient $\to 6x$ so in the limit derivative = $6x *$	A1*	2.5

(4 marks)

Notes

B1: gives correct fraction as in the scheme above or $\frac{3(x+\delta x)^2-3x^2}{\delta x}$

M1: Expands the bracket as above or $3(x+\delta x)^2 = 3x^2 + 6x\delta x + 3(\delta x)^2$

A1: Substitutes correctly into earlier fraction and simplifies

A1*: Completes the proof, as above (may use $\delta x \to 0$), considers the limit and states a conclusion with no errors

03.

Question	Scheme	Marks	AOs
а	Sets $2xy + \frac{\pi x^2}{2} = 250$	B1	2.1
	Obtain $y = \frac{250 - \frac{\pi x^2}{2}}{2x}$ and substitute into P	M1	1.1b
	Use $P = 2x + 2y + \pi x$ with their y substituted	M1	2.1
	$P = 2x + \frac{250}{x} - \frac{\pi x^2}{2x} + \pi x = 2x + \frac{250}{x} + \frac{\pi x}{2} *$	A1*	1.1b
		(4)	
(b)	$x > 0 \text{ and } y > 0 \text{ (distance)} \Rightarrow \frac{250 - \frac{\pi x^2}{2}}{2x} > 0 \text{ or } 250 - \frac{\pi x^2}{2} > 0 \text{ o.e.}$	M1	2.4
	As x and y are distances they are positive so $0 < x < \sqrt{\frac{500}{\pi}}$ *	A1*	3.2a
		(2)	
(c)	Differentiates P with negative index correct in $\frac{dP}{dx}$; $x^{-1} \rightarrow x^{-2}$	M1	3.4
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{250}{x^2} + \frac{\pi}{2}$	A 1	1.1b
	Sets $\frac{dP}{dx} = 0$ and proceeds to $x =$	M1	1.1b
	Substitutes their x into $P = 2x + \frac{250}{x} + \frac{\pi x}{2}$ to give perimeter = 59.8m.	A1	1.1b
		(4)	

(10 marks)

Notes

(a) B1: Correct area equation

M1 : Rearranges their area equation to make y the subject of the formula and attempt to use with an expression for P

M1: Use correct equation for perimeter with their y substituted

A1*: Completely correct solution to obtain and state printed answer

(b) M1: States x > 0 and y > 0 and uses their expression from (a) to form inequality

A1*: Explains that x and y are positive because they are distances, and uses correct expression for y to give the printed answer correctly.

(c) M1: Attempt to differentiate P (deals with negative power of x correctly)

A1 : Correct differentiation

M1: Sets derived function equal to zero and obtains x =

A1: The value of x may not be seen (it is 8.37 to 3sf or $\sqrt{\frac{500}{4+\pi}}$).

Need to see awrt 59.8m with units included for the perimeter.

04.

Question	Scheme	Marks	AOs
a)(i)	$C = \frac{1500}{v} + \frac{2v}{11} + 60 \Rightarrow \frac{dC}{dv} = -\frac{1500}{v^2} + \frac{2}{11}$	M1 A1	3.1b 1.1b
	Sets $\frac{dC}{dv} = 0 \Rightarrow v^2 = 8250$	М1	1.1b
	$\Rightarrow v = \sqrt{8250} \Rightarrow v = 90.8 (\text{km h}^{-1})$	A1	1.1b
(ii)	For substituting their $v = 90.8$ in $C = \frac{1500}{v} + \frac{2v}{11} + 60$	M1	3.4
	Minimum cost =awrt (£) 93	A1 ft	1.1b
		(6)	
(b)	Finds $\frac{d^2C}{dv^2} = +\frac{3000}{v^3}$ at $v = 90.8$	М1	1.1b
	$\frac{d^2C}{dv^2} = (+0.004) > 0 \text{ hence minimum (cost)}$	A1 ft	2.4
		(2)	
(c)	It would be impossible to drive at this speed over the whole journey	B1	3.5b
		(1)	

(9 marks)

Notes

(a)(i)

M1: Attempts to differentiate (deals with the powers of v correctly).

Look for an expression for $\frac{dC}{dv}$ in the form $\frac{A}{v^2} + B$

A1:
$$\left(\frac{dC}{dv}\right) = -\frac{1500}{v^2} + \frac{2}{11}$$

A number of students are solving part (a) numerically or graphically. Allow these students to pick up the M1 A1 here from part (b) when they attempt the second derivative.

M1: Sets $\frac{dC}{dv} = 0$ (which may be implied) and proceeds to an equation of the type $v^n = k, k > 0$

Allow here equations of the type $\frac{1}{v^n} = k$, k > 0

A1: $v = \sqrt{8250}$ or $5\sqrt{330}$ awrt 90.8 (kmh⁻¹). Don't be concerned by incorrect / lack of units. As this is a speed withhold this mark for answers such as $v = \pm \sqrt{8250}$

* Condone $\frac{dC}{dv}$ appearing as $\frac{dy}{dx}$ or perhaps not appearing at all. Just look for the rhs.

(a)(ii)

M1: For a correct method of finding C = from their solution to $\frac{dC}{dv} = 0$.

Do not accept attempts using negative values of v.

Award if you see v = ..., C = ... where the v used is their solution to (a)(i). You do not need to check this calculation.

A1ft: Minimum cost = awrt (£) 93. Condone the omission of units Follow through on sensible values of v. 60 < v < 110

v	С
60	95.9
65	94.9
70	94.2
75	93.6
80	93.3
85	93.1
90	93.0
95	93.1
100	93.2
105	93.4
110	93.6

(b)

M1: Finds $\frac{d^2C}{dv^2}$ (following through on their $\frac{dC}{dv}$ which must be of equivalent difficulty) and attempts to find its value / sign at their v

Allow a substitution of their answer to (a) (i) in their $\frac{d^2C}{dv^2}$

Allow an explanation into the sign of $\frac{d^2C}{dv^2}$ from its terms (as v > 0)

A1ft:
$$\frac{d^2C}{dv^2}$$
 = +0.004 > 0 hence minimum (cost). Alternatively $\frac{d^2C}{dv^2}$ = + $\frac{3000}{v^3}$ > 0 as v > 0

Requires a correct calculation or expression, a correct statement and a correct conclusion.

Follow through on their v (v > 0) and their $\frac{d^2C}{dv^2}$

* Condone $\frac{d^2C}{dv^2}$ appearing as $\frac{d^2y}{dx^2}$ or not appearing at all for the M1 but for the A1 the correct notation must be used (accept notation C'').

(c)

B1: Gives a limitation of the given model, for example

- It would be impossible to drive at this speed over the whole journey
- The traffic would mean that you cannot drive at a constant speed

Any statement that implies that the speed could not be constant is acceptable. Do not accept/ignore irrelevant statements such as "air resistance" etc

05.

Question	Scheme	Marks	AOs
а	$(g(-2)) = 4 \times -8 - 12 \times 4 - 15 \times -2 + 50$	M1	1.1b
	$g(-2) = 0 \Rightarrow (x+2)$ is a factor	A1	2.4
		(2)	
(b)	$4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 20x + 25)$	M1 A1	1.1b 1.1b
	$=(x+2)(2x-5)^2$	M1 A1	1.1b 1.1b
		(4)	
(c)	(i) $x \le -2$, $x = 2.5$	M1 A1ft	1.1b 1.1b
	(ii) $x = -1, x = 1.25$	B1ft	2.2a
		(3)	

(9 marks)

Votes

(a)

M1: Attempts g(-2) Some sight of (-2) embedded or calculation is required.

So expect to see $4 \times (-2)^3 - 12 \times (-2)^2 - 15 \times (-2) + 50$ embedded

Or -32-48+30+50 condoning slips for the M1

Any attempt to divide or factorise is M0. (See demand in question)

A1: $g(-2) = 0 \Rightarrow (x+2)$ is a factor.

Requires a correct statement and conclusion. Both "g(-2) = 0" and "(x+2) is a factor" must be seen in the solution. This may be seen in a preamble before finding g(-2) = 0 but in these cases there must be a minimal statement in QED, "proved", tick etc.

M1: Attempts to divide g(x) by (x+2) May be seen and awarded from part (a)

If inspection is used expect to see $4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 15x + 50)$

If algebraic / long division is used expect to see $\frac{4x^2 \pm 20x}{x+2 + 2 + 4x^3 - 12x^2 - 15x + 50}$

A1: Correct quadratic factor is $(4x^2 - 20x + 25)$ may be seen and awarded from part (a)

M1: Attempts to factorise their $(4x^2 - 20x + 25)$ usual rule (ax + b)(cx + d), $ac = \pm 4$, $bd = \pm 25$

A1: $(x+2)(2x-5)^2$ oe seen on a single line. $(x+2)(-2x+5)^2$ is also correct.

Allow recovery for all marks for $g(x) = (x+2)(x-2.5)^2 = (x+2)(2x-5)^2$

(c)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for either $x \le -2$ or x = 2.5 Follow through on their $g(x) = (x+2)(ax+b)^2$ only where ab < 0 (that is a positive root). Condone x < -2 See SC below for $g(x) = (x+2)(2x+5)^2$

A1ft: BOTH $x \le -2$, x = 2.5 Follow through on their $-\frac{b}{a}$ of their $g(x) = (x+2)(ax+b)^2$ May see $\{x \le -2 \cup x = 2.5\}$ which is fine.

(c) (ii)

B1ft: For deducing that the solutions of g(2x) = 0 will be where x = -1 and x = 1.25 Condone the coordinates appearing (-1,0) and (1.25,0)

Follow through on their 1.25 of their $g(x) = (x+2)(ax+b)^2$

SC: If a candidate reaches $g(x) = (x+2)(2x+5)^2$, clearly incorrect because of Figure 2, we will award

In (i) M1 A0 for $x \le -2$ or x < -2

In (ii) B1 for x = -1 and x = -1.25

Alt (b)	$4x^3 - 12x^2 - 15x + 50 = (x+2)(ax+b)^2$			
	$= a^2x^3 + (2ba + 2a^2)x^2 + (b^2 + 4ab)x + 2b^2$			
	Compares terms to get either a or b	М1	1.1b	
	Either $a=2$ or $b=-5$	A1	1.1b	
	Multiplies out expression $(x+2)(\pm 2x \pm 5)^2$ and compares to $4x^3 - 12x^2 - 15x + 50$	M1		
	All terms must be compared or else expression must be multiplied out and establishes that $4x^3 - 12x^2 - 15x + 50 = (x+2)(2x-5)^2$	A1	1.1b	
		(4)		

06

Question	Scheme	Marks	AOs
а	$x^n \to x^{n-1}$	M1	1.1b
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x - \frac{24}{x^2}$	A1 A1	1.1b 1.1b
		(3)	
(b)	Attempts $6x - \frac{24}{x^2} > 0 \Rightarrow x >$	M1	1.1b
	$x > \sqrt[3]{4}$ or $x \geqslant \sqrt[3]{4}$	A1	2.5
		(2)	

(5 marks)

Notes

(a)

M1: $x^n \to x^{n-1}$ for any correct index of x. Score for $x^2 \to x$ or $x^{-1} \to x^{-2}$ Allow for unprocessed indices. $x^2 \to x^{2-1}$ oe

A1: Sight of either 6x or $-\frac{24}{x^2}$ which may be un simplified.

Condone an additional term e.g. + 2 for this mark

The indices now must have been processed

A1: $\frac{dy}{dx} = 6x - \frac{24}{x^2}$ or exact simplified equivalent. Eg accept $\frac{dy}{dx} = 6x^1 - 24x^{-2}$

You do not need to see the $\frac{dy}{dx}$ and you should isw after a correct simplified answer.

(b)

M1: Sets an allowable $\frac{dy}{dx}$...0 and proceeds to x... via an allowable intermediate equation

 $\frac{dy}{dx}$ must be in the form $Ax + Bx^{-2}$ where $A, B \neq 0$

and the intermediate equation must be of the form $x^p...q$ oe

Do not be concerned by either the processing, an equality or a different inequality.

It may be implied by x = awrt 1.59

A1: $x > \sqrt[3]{4}$ or $x \geqslant \sqrt[3]{4}$ oe such as $x > 4^{\frac{1}{3}}$ or $x \geqslant 2^{\frac{2}{3}}$

07.

Question	Scheme	Marks	AOs
	Attempts to differentiate $x^n \to x^{n-1}$ seen once	M1	1.1b
	$y = 2x^3 - 4x + 5 \Rightarrow \frac{dy}{dx} = 6x^2 - 4$	Al	1.1b
	For substituting $x = 2$ into their $\frac{dy}{dx} = 6x^2 - 4$	dM1	1.1b
	For a correct method of finding a tangent at $P(2,13)$. Score for $y-13="20"(x-2)$	ddM1	1.1b
	y = 20x - 27	A1	1.1b
		(5)	
		(5	marks)

Notes

M1: Attempts to differentiate $x^n \to x^{n-1}$ seen once. Score for $x^3 \to x^2$ or $\pm 4x \to 4$ or $+5 \to 0$

A1: $\left(\frac{dy}{dx}\right) = 6x^2 - 4$ which may be unsimplified $6x^2 - 4 + C$ is A0

dM1: Substitutes x = 2 into their $\frac{dy}{dx}$. The first M must have been awarded.

Score for sight of embedded values, or sight of " $\frac{dy}{dx}$ at x = 2 is" or a correct follow through. Note that 20 on its own is not enough as this can be done on a calculator.

ddM1: For a correct method of finding a tangent at P(2,13). Score for y-13="20"(x-2) It is dependent upon both previous M's.

If the form y = mx + c is used they must proceed as far as c = ...

A1: Completely correct y = 20x - 27 (and in this form)

08.

Question	Scheme	Marks	AOs
а	Attempts to find the value of $\frac{dy}{dx}$ at $x = 2$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x \Rightarrow \text{ gradient of tangent at } P \text{ is } 12$	A1	1.1b
		(2)	
(b)	Gradient $PQ = \frac{3(2+h)^2 - 2 - 10}{(2+h) - 2}$ oe $= \frac{3(2+h)^2 - 12}{(2+h) - 2} = \frac{12h + 3h^2}{h}$	B1	1.1b
	$=\frac{3(2+h)^2-12}{(2+h)-2}=\frac{12h+3h^2}{h}$	M1	1.1b
	=12+3h	A1	2.1
		(3)	
(c)	Explains that as $h \to 0$, $12+3h \to 12$ and states that the gradient of the chord tends to the gradient of (the tangent to) the curve	B1	2.4
		(1)	

(6 marks)

Notes

(a)

M1: Attempts to differentiate, allow $3x^2 - 2 \rightarrow ...x$ and substitutes x = 2 into their answer

A1: cso $\frac{dy}{dx} = 6x \Rightarrow$ gradient of tangent at P is 12

(b)

B1: Correct expression for the gradient of the chord seen or implied.

M1: Attempts $\frac{\delta y}{\delta x}$, condoning slips, and attempts to simplify the numerator. The denominator must be h

A1: cso 12+3h

(c)

B1: Explains that as $h \to 0$, $12+3h \to 12$ and states that the gradient of the chord tends to the gradient of the curve

09.

Question	Scheme	Marks	AOs
а	$V = \pi r^2 h = 355 \Rightarrow h = \frac{355}{\pi r^2}$ $\left(\text{or } rh = \frac{355}{\pi r} \text{ or } \pi rh = \frac{355}{r}\right)$	B1	1.1b
	$C = 0.04 \left(\pi r^2 + 2\pi rh \right) + 0.09 \left(\pi r^2 \right)$	M1	3.4
	$C = 0.13\pi r^2 + 0.08\pi rh = 0.13\pi r^2 + 0.08\pi r \left(\frac{355}{\pi r^2}\right)$	dM1	2.1
	$C = 0.13\pi r^2 + \frac{28.4}{r} *$	A1*	1.1b
		(4)	
(b)	$\frac{dC}{dr} = 0.26\pi r - \frac{28.4}{r^2}$	M1	3.4
		A1	1.1b
	$\frac{\mathrm{d}C}{\mathrm{d}r} = 0 \Rightarrow r^3 = \frac{28.4}{0.26\pi} \Rightarrow r = \dots$	M1	1.1b
	$r = \sqrt[3]{\frac{1420}{13\pi}} = 3.26$	A1	1.1 b
		(4)	
(c)	$\left(\frac{d^2C}{dr^2}\right) 0.26\pi + \frac{56.8}{r^3} = 0.26\pi + \frac{56.8}{"3.26"^3}$	M1	1.1b
	$\left(\frac{\mathrm{d}^2 C}{\mathrm{d}r^2}\right) = (2.45) > 0$ Hence minimum (cost)	A1	2.4
		(2)	
(d)	$C = 0.13\pi ("3.26")^2 + \frac{28.4}{"3.26"}$	M1	3.4
	(C=)13	A1	1.1b
		(2)	

(12 marks) Notes

(a)

B1: Correct expression for h or rh or πrh in terms of r. This may be implied by their later substitution.

Scored for the sum of the three terms of the form $0.04...r^2$, $0.09...r^2$ and $0.04\times...rh$ M1: The $0.04 \times ... rh$ may be implied by eg $0.04 \times ... r \times \frac{355}{\pi r^2}$ if h has already been replaced

dM1: Substitutes h or rh or πrh into their equation for C which must be of an allowable form (see above) to obtain an equation connecting C and r.

It is dependent on a correct expression for h or rh or πrh in terms of r

A1*: Achieves given answer with no errors. Allow Cost instead of C but they cannot just have an expression.

As a minimum you must see

- · the separate equation for volume
- . the two costs for the top and bottom separate before combining
- a substitution before seeing the $\frac{28.4}{r}$ term

Eg
$$355 = \pi r^2 h$$
 and $C = 0.04\pi r^2 + 0.09\pi r^2 + 0.04 \times 2\pi r h = 0.13\pi r^2 + 0.08\pi \times \left(\frac{355}{\pi r}\right)$

(b)

- M1: Differentiates to obtain at least $r^{-1} \rightarrow r^{-2}$
- A1: Correct derivative.
- M1: Sets $\frac{dC}{dr} = 0$ and solves for r. There must have been some attempt at differentiation of the equation for $C(...r^2 \rightarrow ...r$ or $...r^{-1} \rightarrow ...r^{-2})$ Do not be concerned with the mechanics of their rearrangement and do not withhold this mark if their solution for r is negative
- A1: Correct value for r. Allow exact value or awrt 3.26
- (c)
- M1: Finds $\frac{d^2C}{dr^2}$ at their (positive) r or considers the sign of $\frac{d^2C}{dr^2}$.

This mark can be scored as long as their second derivative is of the form $A + \frac{B}{r^3}$ where A and B are non zero

A1: Requires

- A correct $\frac{d^2C}{dr^2}$
- Fither
 - o deduces $\frac{d^2C}{dr^2} > 0$ for r > 0 (without evaluating). There must be some minimal explanation as to why it is positive.
 - o substitute their positive r into $\frac{d^2C}{dr^2}$ without evaluating and deduces $\frac{d^2C}{dr^2} > 0$ for r
 - o evaluate $\frac{d^2C}{dr^2}$ (which must be awrt 2.5) and deduces $\frac{d^2C}{dr^2} > 0$ for r > 0

(d)

- M1: Uses the model and their positive r found in (b) to find the minimum cost. Their r embedded in the expression is sufficient. May be seen in (b) but must be used in (d).
- A1: (C=) 13 ignore units

10.

Question	Scheme	Marks	AOs
a	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x^2 - 7x - 4$	M1 A1	1.1b 1.1b
		(2)	
(b)	Attempts to solve $\left\{\frac{dy}{dx} = \right\} 2x^2 - 7x - 40$ e.g., $(2x+1)(x-4) = 0$ leading to $x =$ and $x =$	M1	1.1b
	Correct critical values $x = -\frac{1}{2}, 4$	A1	1.1b
	Chooses inside region for their critical values	dM1	1.1b
	Accept either $-\frac{1}{2} < x < 4$ or $-\frac{1}{2} \le x \le 4$	A1	1.1b
		(4)	

(6 marks)

Notes:

(a)

M1: Decreases the power of x by one for at least one of their terms. Look for $x^n \to ... x^{n-1}$ Allow for $5 \to 0$

$$\mathbf{A1:} \quad \left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x^2 - 7x - 4$$

(b)

M1: Sets their $\frac{dy}{dx}$...0 where ... may be an equality or an inequality and proceeds to find two values for x from a 3TQ using the usual rules. This may be implied by their critical values.

A1: Correct critical values $x = -\frac{1}{2}$, 4

These may come directly from a calculator and might only be seen on a sketch.

dM1: Chooses the inside region for their critical values.

A1: Accept either
$$-\frac{1}{2} < x < 4$$
 or $-\frac{1}{2} \le x \le 4$ but not, e.g., $-\frac{1}{2} < x \le 4$
Condone, e.g., $x > -\frac{1}{2}$, $x < 4$ or $x > -\frac{1}{2}$ and $x < 4$ or $\left\{x: x > -\frac{1}{2}\right\} \cap \left\{x: x < 4\right\}$

or
$$x \in \left(-\frac{1}{2}, 4\right)$$
 or $x \in \left[-\frac{1}{2}, 4\right]$

Note: You may see $x < -\frac{1}{2}$, x < 4 in their initial work before $-\frac{1}{2} < x < 4$. Condone this so long as it is clear that the $-\frac{1}{2} < x < 4$ is their final answer.