Density GCSE AQA Higher Physics Past Papers Answers

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1	Nucleus splitting into two fragments and releasing two or	This diagram would gain all 3 marks:	1	AO1/1
	three neutrons (at least one) fission neutron	Neutron • Neutron	1	4.4.4.1
	shown to be absorbed by additional large nucleus and causing fission	Neutron Neutron		
	two or three additional neutrons released from fission reaction		1	
2	lowering the control rods increases the number of neutrons absorbed	accept converse description	1	AO2/2
	(so) energy released decreases	allow shareing the position of	1	AO1/1
		allow changing the position of the control rods affects the number of neutrons absorbed for 1 mark		4.4.4.1
3	rate of increase between 240		2	AO2/1
	and 276 (MW / min)	allow 1 mark for attempt to calculate gradient of line at 10 minutes		4.4.4.1
Total			7]

Question	Answers	Extra informatio	n	Mark	AO / Spec. Ref.	
	Level 3: Clear and coherent descinctuding equation needed to calcologically ordered and could be followed to obtain valid results.	ulate density. Steps are	5-6	4.3.1.1 WS2.2	4.3.1.1 WS2.2 Required	
	Level 2: Clear description of one density or partial description of bound be logically ordered.		3–4			
	Level 1: Basic description of mea no indication of how to use them.	surements needed with	1–2			
	No relevant content		0			
	Indicative content					
	For both:					
	 measure mass using a balance calculate density using ρ = m/V 					
	Metal cube:					
	measure length of cube's sides calculate volume	using a ruler				
	Small statue:					
	immerse in water measure volume / mass of water volume of water displaced = vo					
Total				6]	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1	metre rule has a <u>lower</u> resolution	allow metre rule has a resolution of 1mm / 1cm fewer decimal places is	1	WS2.3 RP5 4.3.1.1
	so is less accurate (than the micrometer screw gauge)	insufficient	1	AO1
2	record the value of the zero error when there is no object on the balance		1	RP5 4.3.1.1 AO3
	subtract / add the value of the zero error		1	
3		an answer of 0.0502 (kg) scores 5 marks		RP5 4.3.1.1 AO2
	$V = (18.45 \times 10^{-3})^3$ or $V = 0.01845^3$	this mark may be awarded if width is incorrectly / not converted	1	AOZ
	$V = 6.28 \times 10^{-6} (\text{m}^3)$	this answer only	1	
	$8.0 \times 10^3 = \frac{\text{m}}{6.28 \times 10^{-6}}$	8.0 × $10^3 = \frac{m}{\text{their calculated V}}$	1	
	$m = 8.0 \times 10^3 \times 6.28 \times 10^6$	allow m = 8.0 × 10 ³ × their calculated V	1	
	m = 0.0502 (kg)	allow an answer consistent with their calculated V	1	
Total			9	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1	density = $\frac{\text{mass}}{\text{volume}}$ or $\rho = \frac{m}{V}$		1	AO1 4.3.1.1
2	998 = m 6 500 000		1	AO2 4.3.1.1
	m = 998 × 6 500 000		1	
	m = 6 487 000 000		1	
	$m = 6.487 \times 10^9 \text{ (kg)}$	allow a correct conversion of their calculated value of mass into standard form	1	
3	energy transferred = power × time or $E = Pt$		1	AO1 4.2.4.2
4	t = 18 000 (s) or t = 5 × 60 × 60		1	AO2 4.2.4.2
	$E = 1.5 \times 10^9 \times 18000$	allow a correct substitution using an incorrectly/not converted value of t	1	
	$E = 2.7 \times 10^{13} (J)$	allow a correct calculation using an incorrectly/not converted value of t	1	
5	the variation in demand is (much) greater than 1.5 × 10 ⁹ W	allow the increase in demand is greater than the (power) output of the (hydroelectric) power station	1	AO3 4.1.3
	demand remains high for longer than 5 hours	allow 04:00 to 16:00 is 12 hours allow 04:00 to 16:00 is greater than 5 hours	1	
Total			11	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1	balance / scales		1	AO1 4.3.1.1 RPA5
2	density = $\frac{\text{mass}}{\text{volume}}$ or $\rho = \frac{m}{V}$		1	AO1 4.3.1.1 RPA5
3	$0.68 = \frac{85}{V}$ $V = \frac{85}{0.68}$ $V = 125 \text{ (cm}^3\text{)}$		1 1 1	AO2 4.3.1.1 RPA5
4	repeat readings (of volume) need taking (of each fruit) to show that the readings are close together	allow 'the same' for 'close together'	1	AO3 4.3.1.1 RPA5
Total			6	

Question	Answers	Mark	AO / Spec. Ref.
1	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6 AO1 4.3.1.1 RPA5	
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.	3–4	KPAS
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2	
	No relevant content		
	Indicative content: • measure mass using a balance / scales • part fill a measuring cylinder with water and measure initial volume • place rock in water and measure final volume • volume of rock = final volume - initial volume • fill a displacement / eureka can with water level with spout • place rock in water and collect displaced water • measuring cylinder used to determine volume of displaced water • volume of rock = volume of displaced water • use mass and volume to calculate density • use of: density = mass volume		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
2	maximum density = 2.65 (g/cm³) minimum density = 2.45 (g/cm³)	both required	1	AO3 4.3.1.1 RPA5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
3	chalk or flint		1	AO3 4.3.1.1 RPA5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
4	a mean can be calculated which reduces the effect of random errors	allow anomalies can be identified / removed	1	AO3 4.3.1.1 RPA5

Total Question	10
----------------	----