Binomial Expansion As level Edexcel Maths Past Papers Answers

01.

Question	Scheme	Marks	AOs
а	$\left(2 - \frac{x}{2}\right)^7 = 2^7 + {7 \choose 1} 2^6 \cdot \left(-\frac{x}{2}\right) + {7 \choose 2} 2^5 \cdot \left(-\frac{x}{2}\right)^2 + \dots$	M1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = 128 + \dots$	B1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots -224x + \dots$	A1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots + \dots + 168x^2 + \dots$	A1	1.1b
		(4)	
(b)	Solve $\left(2 - \frac{x}{2}\right) = 1.995$ so $x = 0.01$ and state that 0.01 would be substituted for x into the expansion	B1	2.4
		(1)	

(5 marks)

Notes

(a) M1: Need correct binomial coefficient with correct power of 2 and correct power of x. Coefficients may be given in any correct form; e.g. 1, 7, 21 or ${}^{7}C_{0}$, ${}^{7}C_{1}$, ${}^{7}C_{2}$ or equivalent

B1: Correct answer, simplified as given in the scheme.

A1: Correct answer, simplified as given in the scheme.

A1: Correct answer, simplified as given in the scheme.

(b) B1: Needs a full explanation i.e. to state x = 0.01 and that this would be substituted and that it is a solution of $\left(2 - \frac{x}{2}\right) = 1.995$

02. Question	Scheme	Marks	AOs
а	$\left(2 - \frac{x}{16}\right)^9 = 2^9 + {9 \choose 1} 2^8 \cdot \left(-\frac{x}{16}\right) + {9 \choose 2} 2^7 \cdot \left(-\frac{x}{16}\right)^2 + \dots$	М1	1.1b
	$\left(2 - \frac{x}{16}\right)^9 = 512 + \dots$	B1	1.1b
	$\left(2 - \frac{x}{16}\right)^9 = \dots -144x + \dots$	A 1	1.1b
	$\left(2 - \frac{x}{16}\right)^9 = \dots + \dots + 18x^2 (+ \dots)$	A 1	1.1b
		(4)	
(b)	Sets '512' $a = 128 \Rightarrow a = \dots$	M1	1.1b
	$(a=)\frac{1}{4}$ oe	A1 ft	1.1b
		(2)	
(c)	Sets '512' b +'-144' a = 36 $\Rightarrow b$ =	M1	2.2a
	$(b=)\frac{9}{64}$ oe	A 1	1.1b
		(2)	
		(8 marks)

alt	$\left(2 - \frac{x}{16}\right)^9 = 2^9 \left(1 - \frac{x}{32}\right)^9 = 2^9 \left(1 + \binom{9}{1} \left(-\frac{x}{32}\right) + \binom{9}{2} \left(-\frac{x}{32}\right)^2 + \dots\right)$	M1	1.1b
	= 512+	В1	1.1 b
	=144 <i>x</i> +	A1	1. 1 b
	$= + + 18x^{2} (+)$	A1	1.1b

Notes Mark (a)(b) and (c) as one complete question

(a)

M1: Attempts the binomial expansion. May be awarded on either term two and/or term three Scored for a correct binomial coefficient combined with a correct power of 2 and a correct power

of
$$\left(\pm \frac{x}{16}\right)$$
 Condone $\binom{9}{2}2^7 \cdot \left(-\frac{x^2}{16}\right)$ for term three.

Allow any form of the binomial coefficient. Eg $\binom{9}{2}$ = ${}^{9}C_{2}$ = $\frac{9!}{7!2!}$ = 36

In the alternative it is for attempting to take out a factor of 2 (may allow 2^n outside bracket) and having a correct binomial coefficient combined with a correct power of $\left(\pm \frac{x}{32}\right)$

A1: For
$$-144x$$

A1: For +
$$18x^2$$
 Allow even following $\left(+\frac{x}{16}\right)^2$

Listing is acceptable for all 4 marks

(b)

M1: For setting their 512a = 128 and proceeding to find a value for a. Alternatively they could substitute x = 0 into both sides of the identity and proceed to find a value for a.

A1 ft:
$$a = \frac{1}{4}$$
 oe Follow through on $\frac{128}{\text{their } 512}$

(c)

M1: Condone $512b\pm144\times a=36$ following through on their 512, their -144 and using their value of "a" to find a value for "b"

A1:
$$b = \frac{9}{64}$$
 oe

03

Question	Scheme	Marks	AOs
а	26 or 64 as the constant term	Bl	1.1b
	$\left(2 + \frac{3x}{4}\right)^6 = \dots + {}^6C_1 2^5 \left(\frac{3x}{4}\right)^1 + {}^6C_2 2^4 \left(\frac{3x}{4}\right)^2 + \dots$	M1	1.1b
	$= \dots + 6 \times 2^5 \left(\frac{3x}{4}\right)^1 + \frac{6 \times 5}{2} \times 2^4 \left(\frac{3x}{4}\right)^2 + \dots$	A1	1.1b
	$= 64 + 144x + 135x^2 + \dots$	A1	1.1b
		(4)	
(b)	$\frac{3x}{4} = -0.075 \Rightarrow x = -0.1$ So find the value of $64 + 144x + 135x^2$ with $x = -0.1$	Blft	2,4
	50 mid the value of 04+144x+155x with x=-0.1	(1)	

(5 marks)

Notes

(a)

B1: Sight of either 26 or 64 as the constant term

M1: An attempt at the binomial expansion. This may be awarded for a correct attempt at either the second **OR** third term. Score for the correct binomial coefficient with the correct power of 2 and the correct power of $\frac{3x}{4}$ condoning slips. Correct bracketing is not essential for this M mark.

Condone ${}^{6}C_{2}2^{4}\frac{3x^{2}}{4}$ for this mark

A1: Correct (unsimplified) second AND third terms.

The binomial coefficients must be processed to numbers /numerical expression e.g $\frac{6!}{4!2!}$ or $\frac{6 \times 5}{2}$

They cannot be left in the form 6C_1 and/or ${6 \choose 2}$

A1: $64+144x+135x^2+...$ Ignore any terms after this. Allow to be written $64,144x,135x^2$ (b)

B1ft: x = -0.1 or $-\frac{1}{10}$ with a comment about substituting this into their $64 + 144x + 135x^2$

If they have written (a) as $64,144x,135x^2$ candidate would need to say substitute x = -0.1 into the sum of the first three terms.

As they do not have to perform the calculation allow

Set $2 + \frac{3x}{4} = 1.925$, solve for x and then substitute this value into the expression from (a)

If a value of x is found then it must be correct

Alternative to part (a)

$$\left(2 + \frac{3x}{4}\right)^6 = 2^6 \left(1 + \frac{3x}{8}\right)^6 = 2^6 \left(1 + {}^6C_1 \left(\frac{3x}{8}\right)^1 + {}^6C_2 \left(\frac{3x}{8}\right)^2 + \dots\right)$$

B1: Sight of either 26 or 64

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term. Score for the correct binomial coefficient with the correct power of $\frac{3x}{8}$ Correct bracketing is not essential for this mark.

A1: A correct attempt at the binomial expansion on the second and third terms.

A1: $64+144x+135x^2+...$ Ignore any terms after this.

04

uestion	Scheme	Marks	AOs
а	$(1+kx)^{10} = 1 + {10 \choose 1}(kx)^1 + {10 \choose 2}(kx)^2 + {10 \choose 3}(kx)^3 \dots$	M1 A1	1.1b 1.1b
	$=1+10kx+45k^2x^2+120k^3x^3$	A1	1.1b
		(3)	
(b)	Sets $120k^3 = 3 \times 10k$	B1	1.2
	$4k^2 = 1 \Rightarrow k = \dots$	M1	1.1b
	$k = \pm \frac{1}{2}$	A1	1.1b
		(3)	
	$k = \pm \frac{1}{2}$		

(6 marks)

(a)

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term or fourth term. The coefficients may be of the form ${}^{10}C_1$, ${10 \choose 2}$ etc or eg $\frac{10 \times 9 \times 8}{3!}$

A1: A correct unsimplified binomial expansion. The coefficients must be numerical so cannot be of the form ${}^{10}C_1$, ${10 \choose 2}$. Coefficients of the form $\frac{10 \times 9 \times 8}{3!}$ are acceptable for this mark.

The bracketing must be correct on $(kx)^2$ but allow recovery

A1: $1+10kx+45k^2x^2+120k^3x^3$... or $1+10(kx)+45(kx)^2+120(kx)^3$... Allow if written as a list.

(b)

B1: Sets their $120k^3 = 3 \times \text{their } 10k$ (Seen or implied) For candidates who haven't cubed allow $120k = 3 \times \text{their } 10k$ If they write $120k^3x^3 = 3 \times \text{their } 10kx$ only allow recovery of this mark if x disappears afterwards.

M1: Solves a cubic of the form $Ak^3 = Bk$ by factorising out/cancelling the k and proceeding correctly to at least one value for k. Usually $k = \sqrt{\frac{B}{A}}$

A1: $k = \pm \frac{1}{2}$ o.e ignoring any reference to 0

05.

Question	Scheme	Marks	AOs
а	$(2+ax)^8$ Attempts the term in $x^5 = {}^8C_5 2^3 (ax)^5 = 448a^5 x^5$	M1 A1	1.1a 1.1b
	Sets $448a^5 = 3402 \Rightarrow a^5 = \frac{243}{32}$	M1	1.1b
	$\Rightarrow a = \frac{3}{2}$	A1	1.1b
		(4)	
(b)	Attempts either term. So allow for 2 ⁸ or ⁸ C ₄ 2 ⁴ a ⁴	M1	1.1b
	Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$	dM1	2.1
	= 256 + 5670 = 5926	A1	1.1b
		(3)	

(7 marks)

Notes

(a)

M1: An attempt at selecting the correct term of the binomial expansion. If all terms are given then the correct term must be used. Allow with a missing bracket ${}^{8}C_{5}2^{3}ax^{5}$ and left without the binomial coefficient expanded

A1: 448a5x5 Allow unsimplified but 8C5 must be "numerical"

M1: Sets their $448a^5 = 3402$ and proceeds to $\Rightarrow a^k = ...$ where $k \in \mathbb{N}$ $k \neq 1$

A1: Correct work leading to $a = \frac{3}{2}$

(b)

M1: Finds either term required. So allow for 2^8 or ${}^8C_42^4a^4$ (even allowing with a)

dM1: Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$

A1: cso 5926

06.

Question	Scheme	Marks	AOs
6(a)	38 or 6561 as the constant term	B1	1.1b
	$\left(3 - \frac{2x}{9}\right)^8 = \dots + {}^8C_1(3)^7 \left(-\frac{2x}{9}\right) + {}^8C_2(3)^6 \left(-\frac{2x}{9}\right)^2 + {}^8C_3(3)^5 \left(-\frac{2x}{9}\right)^3 + \dots$ $= \dots + 8 \times \left(3\right)^7 \left(-\frac{2x}{9}\right) + 28 \times \left(3\right)^6 \left(-\frac{2x}{9}\right)^2 + 56\left(3\right)^5 \left(-\frac{2x}{9}\right)^3$	M1 A1	1.1b 1.1b
	$=6561 - 3888x + 1008x^2 - \frac{448}{3}x^3 + \dots$	Al	1.1b
		(4)	
(b)	Coefficient of x^2 is $\frac{1}{2} \times "1008" - \frac{1}{2} \times " - \frac{448}{3}"$	M1	3.1a
	$=\frac{1736}{3}$ (or $578\frac{2}{3}$)	A1	1.1b
		(2)	

(6 marks)

Notes

(a)

B1: Sight of 38 or 6561 as the constant term.

M1: An attempt at the binomial expansion. This can be awarded for the correct structure of the 2^{nd} , 3^{rd} or 4^{th} term. The correct binomial coefficient must be associated with the correct power of 3 and the correct power of $(\pm)\frac{2x}{9}$. Condone invisible brackets

eg
$${}^{8}C_{2}(3)^{6} - \frac{2x^{2}}{9}$$
 for this mark.

A1: For a correct simplified or unsimplified second or fourth term (with binomial coefficients evaluated).

$$+8\times(3)^{7}\left(-\frac{2x}{9}\right)$$
 or $+56(3)^{5}\left(-\frac{2x}{9}\right)^{3}$

A1: $6561-3888x+1008x^2-\frac{448}{3}x^3$ Ignore any extra terms and allow the terms to be listed.

Allow the exact equivalent to $-\frac{448}{3}$ eg $-149.\dot{3}$ but not -149.3.

Condone x^1 and eg +-3888x. Do not isw if they multiply all the terms by eg 3

Alt(a)

B1: Sight of 38(1+....) or 6561 as the constant term

M1: An attempt at the binomial expansion $\left(1 - \frac{2}{27}x\right)^8$. This can be awarded for the correct structure of the 2nd, 3rd or 4th term. The correct binomial coefficient must be associated with the correct power of $(\pm)\frac{2x}{27}$. Condone invisible brackets for this mark.

Score for any of:

$$8 \times -\frac{2}{27}x$$
, $\frac{8 \times 7}{2} \times \left(-\frac{2}{27}x\right)^2$, $\frac{8 \times 7 \times 6}{6} \times \left(-\frac{2}{27}x\right)^3$ which may be implied by any of $-\frac{16}{27}x$, $+\frac{112}{729}x^2$, $-\frac{448}{19683}x^3$

A1: For a correct simplified or unsimplified second or fourth term including being multiplied by 3⁸

A1: $6561-3888x+1008x^2-\frac{448}{3}x^3$ Ignore any extra terms and allow the terms to be listed. Allow the exact equivalent to $-\frac{448}{3}$ eg $-149.\dot{3}$ but not -149.3. Condone x^1 and eg +-3888x

(b)

M1: Adopts a correct strategy for the required coefficient. This requires an attempt to calculate $\pm \frac{1}{2}$ their coefficient of x^2 from part (a) $\pm \frac{1}{2}$ their coefficient of x^3 from part (a).

There must be an attempt to bring these terms together to a single value, ie they cannot just circle the relevant terms in the expansion for this mark. The strategy may be implied by their answer.

Condone any appearance of x^2 or x^3 appearing in their intermediate working.

A1: $\frac{1736}{3}$ or 578 $\frac{2}{3}$ Do not accept 578.6 or $\frac{1736}{3}x^2$

07

Question	Scheme	Marks	AOs
	Attempts the term in x^3 or the term in x^5 of $\left(3 - \frac{1}{2}x\right)^6$ Look for ${}^6C_33^3\left(-\frac{1}{2}x\right)^3$ or ${}^6C_53^1\left(-\frac{1}{2}x\right)^5$	М1	3.1a
	Correct term in x^3 or correct term in x^5 of $\left(3 - \frac{1}{2}x\right)^6$ $-\frac{135}{2}x^3 \text{ or } -\frac{9}{16}x^5$	A1	1.1b
	Attempts one of the required terms in x^5 of $\left(5 + 8x^2\right) \left(3 - \frac{1}{2}x\right)^6$ Either $5 \times {}^6\text{C}_5 3^1 \left(-\frac{1}{2}x\right)^5$ or $8x^2 \times {}^6\text{C}_3 3^3 \left(-\frac{1}{2}x\right)^3$	M1	1.1b
	Attempts the sum of $5 \times {}^{6}\text{C}_{5} 3^{1} \left(-\frac{1}{2}x\right)^{5}$ and $8x^{2} \times {}^{6}\text{C}_{3} 3^{3} \left(-\frac{1}{2}x\right)^{3}$	dM1	2.1
	Coefficient of $x^5 = -\frac{45}{16} - 540 = -\frac{8685}{16}$	Al	1.1b
		(5)	

(5 marks)

Notes:

M1: For the key step in attempting to find one of the required terms in the expansion of $\left(3 - \frac{1}{2}x\right)^6$ to enable the problem to be solved.

Look for ${}^{6}C_{3}3^{3}\left(-\frac{1}{2}x\right)^{3}$ or ${}^{6}C_{5}3^{1}\left(-\frac{1}{2}x\right)^{5}$ but condone missing brackets and slips in signs.

May be part of a complete expansion but only one of the required terms needs to be of the correct form.

A1: For $-\frac{135}{2} \{x^3\}$ or $-\frac{9}{16} \{x^5\}$ which may be unsimplified but the 6C_3 or 6C_5 must be processed. May be implied by $-540 \{x^5\}$ or $-\frac{45}{16} \{x^5\}$

M1: Attempts one of the required terms in x^5 of the expansion of $\left(5+8x^2\right)\left(3-\frac{1}{2}x\right)^6$

Look for $5 \times {}^6C_5 3^1 \left(-\frac{1}{2}x\right)^5$ or $8x^2 \times {}^6C_3 3^3 \left(-\frac{1}{2}x\right)^3$ which would also imply the previous M.

The x^5 may be missing as just the coefficient is required.

May be implied by $-540\left\{x^{5}\right\}$ or $-\frac{45}{16}\left\{x^{5}\right\}$

Condone missing brackets and signs.

You might see candidates make a slip in, e.g., their binomial coefficients, but have an (essentially) correct method to solve the problem.

Note that this M mark is not dependent on the first, so you may be able to award it even if they have made a slip in finding their x^3 or x^5 term in the expansion.

dM1: Attempts the sum of
$$5 \times {}^{6}\text{C}_{5}3^{1} \left(-\frac{1}{2}x\right)^{5}$$
 and $8x^{2} \times {}^{6}\text{C}_{3}3^{3} \left(-\frac{1}{2}x\right)^{3}$

Dependent on the previous M but may be scored at the same time.

The x^5 may be missing as just the coefficients are required. Condone missing brackets and signs.

A1: $-\frac{8685}{16}$ or exact equivalent, -542.8125 and apply isw

Condone
$$-\frac{8685}{16}x^5$$
 for A1

Note that rounded decimals, e.g., -542.81 will not score the last mark.

Note that full marks can be scored for concise solutions such as:

$$5 \times {}^{6}C_{5} \times 3 \times \left(-\frac{1}{2}\right)^{5} + 8 \times {}^{6}C_{3} \times 3^{3} \times \left(-\frac{1}{2}\right)^{3} = -\frac{8685}{16}$$

Alternative

Attempts via the taking out of the common factor can be scored in the same way.

$$\left(3 - \frac{1}{2}x\right)^{6} = 3^{6} \left\{1 + 6 \times \left(-\frac{1}{6}x\right)^{1} + \frac{6 \times 5}{2}\left(-\frac{1}{6}x\right)^{2} + \frac{6 \times 5 \times 4}{3!}\left(-\frac{1}{6}x\right)^{3} + \frac{6 \times 5 \times 4 \times 3}{4!}\left(-\frac{1}{6}x\right)^{4} + \frac{6 \times 5 \times 4 \times 3 \times 2}{5!}\left(-\frac{1}{6}x\right)^{5} + \left(-\frac{1}{6}x\right)^{6}\right\}$$

For M1 A1 look for
$$3^6 \times \frac{6 \times 5 \times 4}{3!} \left(-\frac{1}{6}x \right)^3$$
 or $3^6 \times \frac{6 \times 5 \times 4 \times 3 \times 2}{5!} \left(-\frac{1}{6}x \right)^5$

Score the remaining marks as per the main scheme.

